869 resultados para Crime forecasting
Resumo:
"November 1992."
Resumo:
"July 1996."
Resumo:
During the first half of 2006 the city of Sao Paulo suffered three series of violent attacks against the security forces, civilians, and the government. The violent campaign also included a massive rebellion in prisons and culminated in the kidnapping of a journalist and the broadcast of a manifesto from the criminal organization PCC threatening the police and the government. Right after, the main device used to contain organized crime in the prisons was declared unconstitutional. This episode represents a prototypical example of the use of media-focused terrorism by organized crime for projection into the political communication arena.
Resumo:
A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach. the parameter gamma* = Delta H-amor/(Delta H-inter - Delta H-amor) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and Delta H-amor and Delta H-inter are the enthalpies for-lass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The gamma* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the gamma* parameter is applied in the ternary Al-Ni-Y system. The calculated gamma* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite sonic misfitting, the best glass formers are found quite close to the highest gamma* values, leading to the conclusion that this thermodynamic approach can lie extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
In this paper, a comparative analysis of the long-term electric power forecasting methodologies used in some South American countries, is presented. The purpose of this study is to compare and observe if such methodologies have some similarities, and also examine the behavior of the results when they are applied to the Brazilian electric market. The abovementioned power forecasts were performed regarding the main four consumption classes (residential, industrial, commercial and rural) which are responsible for approximately 90% of the national consumption. The tool used in this analysis was the SAS (c) program. The outcome of this study allowed identifying various methodological similarities, mainly those related to the econometric variables used by these methods. This fact strongly conditioned the comparative results obtained.
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
This article analysed scenarios for Brazilian consumption of ethanol for the period 2006 to 2012. The results show that if the country`s GDP sustains a 4.6% a year growth, domestic consumption of fuel ethanol could increase to 25.16 billion liters in this period, which is a volume relatively close to the forecasted gasoline consumption of 31 billion liters. At a lower GDP growth of 1.22% a year, gasoline consumption would be reduced and domestic ethanol consumption in Brazil would be no higher than 18.32 billion liters. Contrary to the current situation, forecasts indicated that hydrated ethanol consumption could become much higher than anhydrous consumption in Brazil. The former is being consumed in cars moved exclusively by ethanol and flex-fuel cars, successfully introduced in the country at 2003. Flex cars allow Brazilian consumers to choose between gasoline and hydrated ethanol and immediately switch to whichever fuel presents the most favourable relative price.
Resumo:
Using data from an evaluation of methadone maintenance treatment, this study investigated factors associated with continued involvement irt crime during treatment, and in particular whether there appeared to be differences in effectiveness of treatment between different methadone clinics. The methodology was an observational study, in which 304 patients attending three low-intervention, private methadone clinics in Sydney were interviewed on three occasions over a twelve month period. Outcome measures were self-reported criminal activity and police department records of convictions. By self-report, crime dropped, promptly and substantially on entry to treatment, to a level of acquisitive crime about one-eighth that reported during the last addiction period. Analysis of official records indicated that rates of acquisitive convictions were significantly lower in the in-treatment period compared to prior to entry to treatment, corroborating the changes suggested by self-report. Persisting involvement in crime in treatment was predicted by two factors: the cost of persisting use of illicit drugs, particularly cannabis, and ASPD symptom count. Treatment factors also were independently predictive of continued involvement in crime. By both self-report and official records, and adjusting for subject factors, treatment at one clinic teas associated with greater involvement in crime. This clinic operated in a chaotic and poorly organized way. it is concluded that crime during methadone treatment is substantially lower than during street addiction, although the extent of reduction depends on the quality of treatment being delivered.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper provides a detailed analysis of patterns of income generation among 202 active heroin users in South West Sydney. We explore both sources of income and the relative contribution of different types of income generating activities, including drug sales and related activities, property crime, prostitution, legitimate income and avoided expenditures. Despite claims that heroin use leads inevitably to property crime, drug market activities accounted for a greater proportion of drug user income in this sample. Results indicate that law enforcement crackdowns that reduce opportunities for generating income from the drug market may increase property crime by heroin users.
Forecasting regional crop production using SOI phases: an example for the Australian peanut industry
Resumo:
Using peanuts as an example, a generic methodology is presented to forward-estimate regional crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut processing and marketing bodies. The industry could profitably use forecasts of likely production to adjust their operations strategically. Significant, physically based lag-relationships exist between an index of ocean/atmosphere El Nino/Southern Oscillation phenomenon and future rainfall in Australia and elsewhere. Combining knowledge of SOI phases in November and December with output from a dynamic simulation model allows the derivation of yield probability distributions based on historic rainfall data. This information is available shortly after planting a crop and at least 3-5 months prior to harvest. The study shows that in years when the November-December SOI phase is positive there is an 80% chance of exceeding average district yields. Conversely, in years when the November-December SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This information allows the industry to adjust strategically for the expected volume of production. The study shows that simulation models can enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging rainfall events. The methodology can be applied to other industries and regions.