891 resultados para Cover crop


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha(-1) of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha(-1) was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher ON ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A good cover crop should have a vigorous early development and a high potential for nutrient uptake that can be made available to the next crop. In tropical areas with relatively dry winters drought tolerance is also very important. An experiment was conducted to evaluate the early development and nutrition of six species used as cover crops as affected by sub-superficial compaction of the soil. The plants (oats, pigeon pea, pearl millet, black mucuna, grain sorghum, and blue lupin) were grown in pots filled with soil subjected to different subsurface compaction levels (bulk densities of 1.12, 1.16, and 1.60 mg m(-3)) for 39 days. The pots had an internal diameter of 10 cm and were 33.5 cm deep. Grasses were more sensitive to soil compaction than leguminous plants during the initial development. Irrespective of compaction rates, pearl millet and grain sorghum were more efficient in recycling nutrients. These two species proved to be more appropriate as cover crops in tropical regions with dry winters, especially if planted shortly before spring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen (N) mineralization dynamics in no-till systems is affected, among other factors, by N amount and quality in the mulch and by climatic conditions. Leaching of NO3-N and NH4-N from six plant species used as soil cover crops in tropical environments were evaluated when the straw was submitted to rainfall after chemical desiccation. Millet (Pennisetum glaucum), guinea sorghum (Sorghum vulgare), black oat (Avena strigosa), triticale (Triticum secale), Indian hemp (Crotalaria juncea), and brachiaria (Brachiaria decumbens) were grown in a greenhouse, in Botucatu-SP, Brazil. Forty-five days after emergence, the plants were cut at the root collar, oven-dried, and submitted to simulated rainfalls of 4.4, 8.7, 17.04, 34.9, and 69.8 mm, considering an amount of straw equivalent to 8 t ha(-1) of dry matter. The amounts of N-NO3- extracted from the straw by rainwater were very small. However, accumulated rainfall around 70 mm caused ammonium leaching ranging from 2.5 to 9.5kg ha(-1), depending on the species. Plant residues of triticale and black oat (grasses) and Indian hemp (legume) showed high N leaching intensity with the first rains after chemical desiccation. The amount of N leached from straw was highly correlated with N tissue content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring shikimic acid accumulation in response to glyphosate applications can be a rapid and accurate way to quantify and predict glyphosate-induced damage to sensitive plants. The objective of this paper was to evaluate the effect of cover crop termination timing by glyphosate application on rice (Oryza sativa L.) yield in a no-till system. A factorial experiment, arranged in a split-plot design, was conducted for 2 yr. Treatments consisted of cover crops (main plots) and timed herbicide applications (subplots) to these cover crops (30, 20, 10, and 0 d before rice planting). There was a decrease in rice yield from 2866 kg ha-1 to 2322 kg ha-1 when the herbicide was applied closer to the rice planting day. Glyphosate application on cover crops increased shikimate concentrations in rice seedlings cultivated under palisade grass (Brachiaria brizantha), signal grass (B. ruziziensis), guinea grass (Panicum maximum), and weedy fallow (spontaneous vegetation) but not under millet (Pennisetum glaucum), which behaved similarly to the control (clean fallow, no glyphosate application). Glyphosate applications in the timing intervals used were associated with stress in the rice plants, and this association increased if cover crops took longer to completely dry and if higher amounts of biomass were produced. Millet, as a cover crop, allowed the highest seedling dry matter for upland rice and the highest rice yield. Our results suggest that using millet as a cover crop, with glyphosate application far from upland rice planting day (10 d or more), was the best option for upland rice under a no-tillage system. © Crop Science Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the grass cover crop production in crop systems involving maize and Urochloa ruziziensis, and the influence of topdressing nitrogen rates in the yield and agronomic efficiency on common-bean cultivated in succession in no-tillage. The experiments were conducted in Jaboticabal-SP, in a eutrophic red latosol, in the second year of no-tillage system implementation. The IPR 139 cultivar was used in split plot design with three replications, in randomized block. The plots had been composed for three crop systems in the summer season, with maize exclusive, maize intercropped with U. ruziziensis and U. ruziziensis exclusive. The subplots had been constituted for five nitrogen rates (0, 40, 80, 120 and 160 kg ha(-1)), applied as topdressing at V4-4 in irrigated common-bean cultivated in the winter-spring season. The use of U. ruziziensis in crops systems, exclusive or intercropped with maize favors the grass cover crop production sufficiently to total soli surface covered, possibility similar grain yield compared to maize exclusive. The topdressing nitrogen application doesn't affect the common-bean yield in succession to maize and U. ruziziensis intercropped. The increase of nitrogen rates in common-bean in succession to maize exclusive improves the yield, although decreases the agronomic efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives of this project were to study corn nitrogen (N) fertilization requirement and corn-soybean yield response when grown in a rye cover cropping system. Multiple rates of N fertilizer were applied, with measurement of corn yield response to applied N and soybean yield with and without a fall planted winter rye cover crop. The study was conducted at multiple research farms, with the intent for comparison of with and without a cover crop system across varying soil and climatic conditions in Iowa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover crop selection should be oriented to the achievement of specific agrosystem benefits. The covercrop, catch crop, green manure and fodder uses were identified as possible targets for selection. Theobjective was to apply multi-criteria decision analysis to evaluate different species (Hordeum vulgareL., Secale cereale L., ×Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars according to theirsuitability to be used as cover crops in each of the uses. A field trial with 20 cultivars of the five specieswas conducted in Central Spain during two seasons (October?April). Measurements of ground cover, cropbiomass, N uptake, N derived from the atmosphere, C/N, dietary fiber content and residue quality werecollected. Aggregation of these variables through utility functions allowed ranking species and cultivarsfor each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while thevetches were the best as green manures. The mustard attained high ranks as cover and catch crop the firstseason, but the second decayed due to low performance in cold winters. Mustard and vetches obtainedworse rankings than grasses as fodder. Hispanic was the most suitable barley cultivar as cover and catchcrop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop andfodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. Thisanalysis allowed comparison among species and cultivars and might provide relevant information forcover crops selection and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of cover crops in the intercrop period may provide a broad range of ecosystem services derived from the multiple functions they can perform, such as erosion control, recycling of nutrients or forage source. However, the achievement of these services in a particular agrosystem is not always required at the same time or to the same degree. Thus, species selection and definition of targeted objectives is critical when growing cover crops. The goal of the current work was to describe the traits that determine the suitability of five species (barley, rye, triticale, mustard and vetch) for cover cropping. A field trial was established during two seasons (October to April) in Madrid (central Spain). Ground cover and biomass were monitored at regular intervals during each growing season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment, carbon (C), nitrogen (N), and fibre (neutral detergent, acid and lignin) contents, and the N fixed by the legume were determined. The grasses reached the highest ground cover (83–99%) and biomass (1226–1928 g/m2) at the end of the experiment. With the highest C:N ratio (27–39) and dietary fibre (527–600 mg/g) and the lowest residue quality (~680 mg/g), grasses were suitable for erosion control, catch crop and fodder. The vetch presented the lowest N uptake (2·4 and 0·7 g N/m2) due to N fixation (9·8 and 1·6 g N/m2) and low biomass accumulation. The mustard presented high N uptake in the warm year and could act as a catch crop, but low fodder capability in both years. The thermal time before reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crop selection and management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis analyses buckwheat as a cover crop in Florida. The study was designed to demonstrate: soil enrichment with nutrients, mycorrhizal arbuscular fungi interactions, growth in different soil types, temperature limitations in Florida, and economic benefits for farmers. Buckwheat was planted at the FIU organic garden (Miami, FL) in early November and harvested in middle December. After incorporation of buckwheat residues, soil analyses indicated the ability of buckwheat to enrich soil with major nutrients, in particular, phosphorus. Symbiosis with arbuscular mycorrhizal fungi increased inorganic phosphorus uptake and plant growth. Regression analysis on aboveground buckwheat biomass weight and soil characteristics showed that high soil pH was the major limiting factor that affected buckwheat growth. Spatial analysis illustrated that buckwheat could be planted in South Florida throughout the year but might not be planted in North and Central Florida in winter. An economic assessment proved buckwheat to be a profitable cover crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente estudo quantificou os efeitos da fertilização mineral e da cobertura do solo com uma leguminosa (Pueraria phaseoloides (Roxb) Benth.) sobre a dinâmica de nutrientes no sistema solo-planta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of (a) On-farm trials (eight) over a two-year period designed to test the effectiveness of leguminous cover crops in terms of increasing maize yields in Igalaland, Nigeria. (b) A survey designed to monitor the extent of, and reasons behind, adoption of the leguminous cover crop technology in subsequent years by farmers involved, to varying degrees, in the trial programme. particular emphasis was placed on comparing adoption of leguminous cover crops with that of new crop varieties released by a non-governmental organization in the same area since the mid 1980s. While the leguminous cover crop technology boosted maize grain yields by 127 to 136% above an untreated control yield of between 141 and 171 kg ha(-1), the adoption rate (number of farmers adopting) was only 18%. By way of contrast, new crop varieties had a highly variable benefit in terms of yield advantage over local varieties, with the best average increase of around 20%. Adoption rates for new crop varieties, assessed as both the number of farmers growing the varieties and the number of plots planted to the varieties, were 40% on average. The paper discusses some key factors influencing adoption of the leguminous cover crop technology, including seed availability. Implications of these results for a local non-governmental organization, the Diocesan Development Services, concerned with promoting the leguminous cover crop technology are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.