878 resultados para Corpus callosum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the relationship between corpus callosum area and both inter-hemispheric facilitation and interference in schizophrenics and controls. Mid-sagittal sections through the corpus callosum were measured using structural magnetic resonance imaging on 42 patients and 43 normal controls, along with symptom profiles. In a sub-sample, a modified version of the Stroop Test was also performed (27 patients and 29 controls) to assess inter-hemispheric facilitation and interference of colour naming. In the larger sample (total subjects, n=85), there were no significant differences between patients and controls in CC area but a trend towards smaller values in patients in all but the posterior segment. In the sub-sample, bilateral facilitation was greater, and interference, less in schizophrenics compared with controls. There was a positive correlation between facilitation and posterior CC area, parallelled by a negative correlation between interference and posterior CC area, in both patients and controls, which only reached statistical significance when both groups were combined. These findings suggest that the link, between CC size and neuropsychological processes involving inter-hemispheric transfer of information, is common to both schizophrenics and normal controls. There were significant negative correlations between anterior CC area and psychomotor poverty (avolition, anhedonia and affective flattening), and a suggestion that the negative correlation between age and CC size in controls was not present in patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to investigate the presence of corpus callosum (CC) volume deficits in a population-based recent-onset psychosis (ROP) sample, and whether CC volume relates to interhemispheric communication deficits. For this purpose, we used voxel-based morphometry comparisons of magnetic resonance imaging data between ROP (n = 122) and healthy control (n = 94) subjects. Subgroups (38 ROP and 39 controls) were investigated for correlations between CC volumes and performance on the Crossed Finger Localization Test (CFLT). Significant CC volume reductions in ROP subjects versus controls emerged after excluding substance misuse and non-right-handedness. CC reductions retained significance in the schizophrenia subgroup but not in affective psychoses subjects. There were significant positive correlations between CC volumes and CFLT scores in ROP subjects, specifically in subtasks involving interhemispheric communication. From these results, we can conclude that CC volume reductions are present in association with ROP. The relationship between such deficits and CFLT performance suggests that interhemispheric communication impairments are directly linked to CC abnormalities in ROP. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thinning of the corpus callosum (CC) is often observed in individuals who were born very preterm. Damage to the CC during neurodevelopment may be associated with poor neuropsychological performance. This study aimed to explore any evidence of CC pathology in adolescents aged 14-15 years who were born very preterm, and to investigate the relationship between CC areas and verbal skills. Seventy-two individuals born before 33 weeks of gestation and 51 age- and sex-matched full-term controls received structural MRI and neuropsychological assessment. Total CC area in very preterm adolescents was 7.5% smaller than in controls, after adjusting for total white matter volume (P=0.015). The absolute size of callosal subregions differed between preterm and fullterm adolescents: preterm individuals had a 14.7% decrease in posterior (P<0.0001) and an 11.6% decrease in mid-posterior CC quarters (P=0.029). Preterm individuals who had experienced periventricular haemorrhage and ventricular dilatation in the neonatal period showed the greatest decrease in CC area. In very preterm boys only, verbal IQ and verbal fluency scores were positively associated with total mid-sagittal CC size and midposterior surface area. These results suggest that very preterm birth adversely affects the development of the CC, particularly its posterior quarter, and this impairs verbal skills in boys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia. In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for anophthalmia/microphthalmia. ©2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Département de Psychologie, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous theory and research in animals has identified the critical role that fetal testosterone (FT) plays in organizing sexually dimorphic brain development. However, to date there are no studies in humans directly testing the organizational effects of FT on structural brain development. In the current study we investigated the effects of FT on corpus callosum size and asymmetry. High-resolution structural magnetic resonance images (MRI) of the brain were obtained on 28 8-11-year-old boys whose exposure to FT had been previously measured in utero via amniocentesis conducted during the second trimester. Although there was no relationship between FT and midsaggital corpus callosum size, increasing FT was significantly related to increasing rightward asymmetry (e.g., Right>Left) of a posterior subsection of the callosum, the isthmus, that projects mainly to parietal and superior temporal areas. This potential organizational effect of FT on rightward callosal asymmetry may be working through enhancing the neuroprotective effects of FT and result in an asymmetric distribution of callosal axons. We suggest that this possible organizational effect of FT on callosal asymmetry may also play a role in shaping sexual dimorphism in functional and structural brain development, cognition, and behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Abnormalities in the anterior interhemispheric connections provided by the corpus callosum (CC) have long been implicated in bipolar disorder (BID). In this study, we used complementary diffusion tensor imaging methods to study the structural integrity of the CC and localization of potential abnormalities in BD. Methods: Subjects included 33 participants with BID and 40 healthy comparison participants. Fractional anisotropy (FA) measures were compared between groups with region of interest (ROD methods to investigate the anterior, middle, and posterior CC and voxel-based methods to further localize abnormalities. Results: In ROI-based analyses, FA was significantly decreased in the anterior and middle CC in the BID group (p <.05). Voxel-based analyses similarly localized group differences to the genu, rostral body, and anterior midbody of CC (p <.05, corrected). Conclusion: The findings demonstrate abnormalities in the structural integrity of the anterior CC in BID that might contribute to altered interhemispheric connectivity in this disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrary to expectations derived from preclinical studies of the effects of stress, and imaging studies of adults with posttraumatic stress disorder (PTSD), there is no evidence of hippocampus atrophy in children with PTSD. Multiple pediatric studies have reported reductions in the corpus callosum - the primary white matter tract in the brain. Consequently, in the present study, diffusion tensor imaging was used to assess white matter integrity in the corpus callosum in 17 maltreated children with PTSD and 15 demographically matched normal controls. Children with PTSD had reduced fractional anisotropy in the medial and posterior corpus, a region which contains interhemispheric projections from brain structures involved in circuits that mediate the processing of emotional stimuli and various memory functions - core disturbances associated with a history of trauma. Further exploration of the effects of stress on the corpus callosum and white matter development appears a promising strategy to better understand the pathophysiology of PTSD in children. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of long-term disability in patients with multiple sclerosis (MS) is essential. Magnetic resonance imaging (MRI) measurement of brain volume may be of predictive value but sophisticated MRI techniques are often inaccessible in clinical practice. The corpus callosum index (CCI) is a normalized measurement that reflects changes of brain volume. We investigated medical records and 533 MRI scans at diagnosis and during clinical follow-up of 169 MS patients (mean age 42 +/- 11 years, 86% relapsing-remitting MS, time since first relapse 11 +/- 9 years). CCI at diagnosis was 0.345 +/- 0.04 and correlated with duration of disease (p = 0.002; r = -0.234) and expanded disability status scale (EDSS) score at diagnosis (r = -0.428; p < 0.001). Linear regression analyses identified age, duration of disease, relapse rate and EDSS at diagnosis as independent predictors for disability after mean of 7.1 years (Nagelkerkes' R:0.56). Annual CCI decrease was 0.01 +/- 0.02 (annual tissue loss: 1.3%). In secondary progressive MS patients, CCI decrease was double compared to that in relapsing-remitting MS patients (p = 0.04). There was a trend of greater CCI decrease in untreated patients compared to those who received disease modifying drugs (p = 0.2). CCI is an easy to use MRI marker for estimating brain atrophy in patients with MS. Brain atrophy as measured with CCI was associated with disability progression but it was not an independent predictor of long-term disability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary spastic paraplegia (HSP) associated with thin corpus callosum is a rare autosomal recessive neurodegenerative disorder characterized by an abnormally thin corpus callosum, normal motor development, slowly progressive spastic paraparesis and cognitive deterioration. To investigate and localize abnormalities in the brains of two Chinese patients with HSP-TCC, with mutations in the spatacsin gene. Diffusion tensor imaging (DTI) was used to determine the mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patients in comparison to 20 healthy subjects. Voxel-based analysis (VBA) of both the diffusion and anisotropy values were performed using statistical parametric mapping (SPM). Significant changes with MD increase and FA reduction were found in the already known lesions including the corpus callosum, cerebellum and thalamus. In addition, changes were also found in regions that appear to be normal in conventional MRI, such as the brain stem, internal capsule, cingulum and subcortical white matter including superior longitudinal fascicle and inferior longitudinal fascicle. Neither increase in FA nor reduction in MD was detected in the brain. Our study provides clear in vivo MR imaging evidence of a more widespread brain involvement of HSP-TCC. MD is more sensitive than FA in detecting lesions in thalamus and subcortical white matter, suggesting that MD may be a better marker of the disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT: The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation.