993 resultados para Core Reactor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addendum. ( v. illus. (part fold.)), issued 1959-

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the objective to improve the reactor physics calculation on a 2D and 3D nuclear reactor via the Diffusion Equation, an adaptive automatic finite element remeshing method, based on the elementary area (2D) or volume (3D) constraints, has been developed. The adaptive remeshing technique, guided by a posteriori error estimator, makes use of two external mesh generator programs: Triangle and TetGen. The use of these free external finite element mesh generators and an adaptive remeshing technique based on the current field continuity show that they are powerful tools to improve the neutron flux distribution calculation and by consequence the power solution of the reactor core even though they have a minor influence on the critical coefficient of the calculated reactor core examples. Two numerical examples are presented: the 2D IAEA reactor core numerical benchmark and the 3D model of the Argonauta research reactor, built in Brasil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The resistive-type superconducting fault current limiters (RSFCL) prototypes using YBCO-coated conductors have shown current limitation for medium voltage class applications for acting time up to 80 ms. By connecting an air-core reactor in parallel with the RSFCL, thus making an hybrid current limiter, one can extend the acting time for up to 1 s. In this work, we report the performance of a hybrid current limiter subjected to an AC peak fault current of 2 kA during 1 s for which within the first 80 ms the SFCL limits the current concurrently with the air-core reactor, and for the remaining 920 ms, only the air-core reactor limits the current. In order to evaluate the actual conditions for subsequent reconnection of RSFCL to the power grid, the hybrid fault current limiter was tested varying the time interval for recovery from 900 ms and 1.2 s, followed again by the concurrent operation of the hybrid limiter during 1 s (SFCL during 80 ms). From this evaluation test, the recovery time can be measured and compared using the voltage peak generated in superconducting module from the first and second fault test. The recovery time was also determined through the pulsed current method (PCM) on short-length sample test. The results showed that the fault current was limited from 1.9 kA down to 514 A after 1 cycle of 60 Hz frequency, with recovery time lower than 1.2 s for two subsequent fault current tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistive-type of superconducting fault current limiters (RSFCL) have been developed for medium voltage class aiming to operate at 1 MVA power capacity and short time recovery (< 2 s). A RSFCL in form of superconducting modular device was designed and constructed using 50 m-length of YBCO coated conductor tapes for operation under 1 kV / 1 kA and acting time of 0.1 s. In order to increase the acting time the RSFCL was combined with an air-core reactor in parallel to increase the fault limiting time up to 1 s. The tests determined the electrical and thermal characteristics of the combined resistive/ inductive protection unit. The combined fault current limiter reached a limiting current of 583 A, corresponding to a limiting factor of 3.3 times within an acting time of up to 1 s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with an open-core gasifier, a novel open-topped throated gasifier was designed and used. A sampling system was designed and installed to determine the water, tar and particular content of the raw product gas. This permitted evaluation of the effects of process parameters and reactor design on tar and particular production, although a large variation was found for the particulate measurements due to the capture of large particles. For both gasifiers, the gasification process was studied in order to identify and compare the mechanisms controlling the position and shape of the reaction zones. The stability of the reaction zone was found to be governed by the superficial gas velocity within the reactor. A superficial gas velocity below 0.2 Nms-1 resulted in a rising reaction zone in both gasifiers. Turndown is achieved when the rate of char production by flaming pyrolysis equals the rate of char gasification over a range of throughputs. A turndown ratio of 2:1 was achieved for the hybrid-throated gasifier, compared to 1.3:1 for the open-core. It is hypothesized that pyrolysis is a surface area phenomenon, and that in the hybrid gasifier the pyrolysis front can expand to form a dome-shape. The rate of char gasification is believed to increase as the depth of the gasification zone increases. Vibration of the open-core reactor bed decreased the bed pressure drop, reduced the voidage, aided solids flow and gave a minor improvement in the product gas energy content. Insulation improved the performance of both reactors by reducing heat losses resulting in a reduced air to feed ratio requirement. The hybrid gasifier gave a higher energy conversion efficiency, a higher product gas heating value, and a lower tar content than the open-core gasifier due to efficient gas mixing in a high temperature tar cracking region below the throat and reduced heat losses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends: on the core simulator used; the GA itself is code independent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO 2/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO 2 fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Isotopic content assessment has a paramount importance for safety and storage reasons. During the latest years, a great variety of codes have been developed to perform transport and decay calculations, but only those that couple both in an iterative manner achieve an accurate prediction of the final isotopic content of irradiated fuels. Needless to say, them all are supposed to pass the test of the comparison of their predictions against the corresponding experimental measures.