954 resultados para Cooling equipment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prestando atenção e observando o que se passa à nossa volta, conclui-se que as condições climáticas da Terra estão a mudar rapidamente. As alterações ambientais que impomos ao nosso planeta em resultado da atividade humana nas suas múltiplas áreas de ação, obrigam-nos a tomar consciência da necessidade na adoção de atitudes e formas de vida mais condizentes com a preservação do ambiente, agindo no respeito pelos processos naturais de renovação ambiental. A resposta a este problema tem-se traduzido na aplicação de um conjunto de legislações e práticas com o objetivo de promover uma redução significativa das emissões de gases com efeito de estufa. Entre outros, os gases fluorados são dos mais relevantes gases com efeito de estufa, conforme identificados no Protocolo de Quioto. Esta tese tem como objetivo mostrar as ações que os técnicos de AVAC e refrigeração necessitam de executar para a sua certificação, para operar com equipamentos fixos de refrigeração que contenham gases fluorados com efeito de estufa, bem como procedimentos e cuidados necessários no respeito e conformidade com a legislação em vigor. Foi construída uma plataforma experimental com um equipamento de refrigeração para a prática e manuseamento do gás fluorados com a eventualidade de desenvolver sessões de formação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Broiler production in Brazil has turned into a very competitive activity in the late years. Constant innovation leads to higher productivity maintaining the same cost of production, which is a desirable situation. Lately one characteristic for broiler housing in Brazil has been the increase in birds density requiring the use of controlled environment through the use of fan and fogging systems in order to achieve better birds productive performance. Most Brazilian producer already uses cooling equipment however it is still unknown the right way to control the wind speed and direction towards the birds. This present research has the objective to evaluate the effect of the wind speed on the heat transfer from the birds to the environment for broilers at 27 days old. There was used 200 birds, placed in a wind tunnel measuring 1.10 m high by 1.10m wide x 10.0 m of length, and the birds density varied from 9, 16 and 20 birds/m 2. Two wind speed were simulated 340 rpm (1.0 m/s) and 250 rpm (0.3 m/s). The increase in the wind velocity related to the smaller bird densityled to a higher heat loss and to a more uniform temperature distribution in its exposed areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amount of butter produced by the grain-belt states is evidence that a great many cows are milked by the midwestern farmer. Most of this milk is separated on the farm, the cream is sold, and the skimmilk is fed to hogs and other livestock. As the market for fluid milk has developed, many farmers near the cities have turned to the sale of milk, because it affords a better return for the butterfat sold. Much of the milk produced for sale as fluid milk is produced under practically the same conditions as milk which is produced primarily for the same of cream. The Department of Dairy Husbandry of the University of Nebraska, in conducting its instructional and investigational work, comes in contact with the milk producer. An effort has been made, therefore, to study the relation of milk quality to farm conditions as found among the milk producers or patrons who have delivered milk to the department. The study was carried on in an effort to find possible ways of bettering the conditions without upsetting the economic balance existing between the production of cream and fluid milk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incumbent telecommunication lasers emitting at 1.5 µm are fabricated on InP substrates and consist of multiple strained quantum well layers of the ternary alloy InGaAs, with barriers of InGaAsP or InGaAlAs. These lasers have been seen to exhibit very strong temperature dependence of the threshold current. This strong temperature dependence leads to a situation where external cooling equipment is required to stabilise the optical output power of these lasers. This results in a significant increase in the energy bill associated with telecommunications, as well as a large increase in equipment budgets. If the exponential growth trend of end user bandwidth demand associated with the internet continues, these inefficient lasers could see the telecommunications industry become the dominant consumer of world energy. For this reason there is strong interest in developing new, much more efficient telecommunication lasers. One avenue being investigated is the development of quantum dot lasers on InP. The confinement experienced in these low dimensional structures leads to a strong perturbation of the density of states at the band edge, and has been predicted to result in reduced temperature dependence of the threshold current in these devices. The growth of these structures is difficult due to the large lattice mismatch between InP and InAs; however, recently quantum dots elongated in one dimension, known as quantum dashes, have been demonstrated. Chapter 4 of this thesis provides an experimental analysis of one of these quantum dash lasers emitting at 1.5 µm along with a numerical investigation of threshold dynamics present in this device. Another avenue being explored to increase the efficiency of telecommunications lasers is bandstructure engineering of GaAs-based materials to emit at 1.5 µm. The cause of the strong temperature sensitivity in InP-based quantum well structures has been shown to be CHSH Auger recombination. Calculations have shown and experiments have verified that the addition of bismuth to GaAs strongly reduces the bandgap and increases the spin orbit splitting energy of the alloy GaAs1−xBix. This leads to a bandstructure condition at x = 10 % where not only is 1.5 µm emission achieved on GaAs-based material, but also the bandstructure of the material can naturally suppress the costly CHSH Auger recombination which plagues InP-based quantum-well-based material. It has been predicted that telecommunications lasers based on this material system should operate in the absence of external cooling equipment and offer electrical and optical benefits over the incumbent lasers. Chapters 5, 6, and 7 provide a first analysis of several aspects of this material system relevant to the development of high bismuth content telecommunication lasers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work design criteria for cooling of electronic systems used in a digital transmission equipment are considered. An experimental study using a simulated electronic equipment in which vertically oriented circuit boards are aligned to form vertical channels is carried out. Resistors are used to simulate actual components. The temperature of several components in the printed circuit boards are measured and the influence of the baffles and shields on the cooling effect are discussed. It was observed that the use of the baffles reduce the temperature levels and, the use of shields, although protecting the components from magnetic effects, cause an increase in the temperature levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Contract no. NObsr-72773, Bureau of Ships, Index no. NE-110,000."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Excerpt] The advantages resulting from the use of numerical modelling tools to support the design of processing equipment are almost consensual. The design of calibration systems in profile extrusion is not an exception . H owever , the complex geome tries and heat exchange phenomena involved in this process require the use of numerical solvers able to model the heat exchange in more than one domain ( calibrator and polymer), the compatibilization of the heat transfer at the profile - calibrator interface and with the ability to deal with complex geometries. The combination of all these features is usually hard to find in commercial software. Moreover , the dimension of the meshes required to ob tain accurate results, result in computational times prohibitive for industrial application. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poultry carcasses have to be chilled to reduce the central breast temperatures from approximately 40 to 4 °C, which is crucial to ensure safe products. This work investigated the cooling of poultry carcasses by water immersion. Poultry carcasses were taken directly from an industrial processing plant and cooled in a pilot chiller, which was built to investigate the influence of the method and the water stirring intensity on the carcasses cooling. A simplified empiric mathematical model was used to represent the experimental results. These results indicated clearly that the understanding and quantification of heat transfer between the carcass and the cooling water is crucial to improve processes and equipment. The proposed mathematical model is a useful tool to represent the dynamics of carcasses cooling, and it can be used to compare different chiller operational conditions in industrial plants. Therefore, this study reports data and a simple mathematical tool to handle an industrial problem with little information available in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilms in milk cooling tanks compromise product quality even on farms. Due to the lack of studies of this topic, this study evaluated the microbiological conditions of raw milk cooling tanks on farms and characterized the microorganisms isolated from these tanks. Samples were wiped off with sterile swabs from seven milk cooling tanks in three different points in each tank. Mesophiles and psychrotrophic counts were performed in all samples. The isolation of Pseudomonas spp., Bacillus cereus and atypical colonies formed on selective media were also performed, totalizing 297 isolates. All isolates were tested for protease and lipase production and biofilm formation. Of the total isolates, 62.9% produced protease, 55.9% produced lipase, and 50.2% produced biofilm. The most widespread genus inside the milk cooling tank was Pseudomonas since it was not possible to associate this contamination with a single sampling point in the equipment. High counts of microorganisms were found in some cooling tanks, indicating poor cleaning of the equipment and providing strong evidences of microbial biofilm presence. Moreover, it is worth mentioning the milk potential contamination with both microbial cells and their degrading enzymes, which compromises milk quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic salt sorbent and water as a refrigerant, sealed under vacuum with no moving parts. A 5.6m2 aperture area outdoor laboratory-scale system of sorption module integrated solar collectors was installed in Stockholm, Sweden and evaluated under constant re-cooling and chilled fluid return temperatures in order to assess collector performance. Measured average solar cooling COP was 0.19 with average cooling powers between 120 and 200 Wm-2 collector aperture area. It was observed that average collector cooling power is constant at daily insolation levels above 3.6 kWhm-2 with the cooling energy produced being proportional to solar insolation. For full evaluation of an integrated sorption collector solar heating and cooling system, under the umbrella of a European Union project for technological innovation, a 180 m2 large-scale demonstration system has been installed in Karlstad, Sweden. Results from the installation commissioned in summer 2014 with non-optimised control strategies showed average electrical COP of 10.6 and average cooling powers between 140 and 250 Wm-2 collector aperture area. Optimisation of control strategies, heat transfer fluid flows through the collectors and electrical COP will be carried out in autumn 2014.