964 resultados para Controle de robôs móveis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work was to enable the recognition of human gestures through the development of a computer program. The program created captures the gestures executed by the user through a camera attached to the computer and sends it to the robot command referring to the gesture. They were interpreted in total ve gestures made by human hand. The software (developed in C ++) widely used the computer vision concepts and open source library OpenCV that directly impact the overall e ciency of the control of mobile robots. The computer vision concepts take into account the use of lters to smooth/blur the image noise reduction, color space to better suit the developer's desktop as well as useful information for manipulating digital images. The OpenCV library was essential in creating the project because it was possible to use various functions/procedures for complete control lters, image borders, image area, the geometric center of borders, exchange of color spaces, convex hull and convexity defect, plus all the necessary means for the characterization of imaged features. During the development of the software was the appearance of several problems, as false positives (noise), underperforming the insertion of various lters with sizes oversized masks, as well as problems arising from the choice of color space for processing human skin tones. However, after the development of seven versions of the control software, it was possible to minimize the occurrence of false positives due to a better use of lters combined with a well-dimensioned mask size (tested at run time) all associated with a programming logic that has been perfected over the construction of the seven versions. After all the development is managed software that met the established requirements. After the completion of the control software, it was observed that the overall e ectiveness of the various programs, highlighting in particular the V programs: 84.75 %, with VI: 93.00 % and VII with: 94.67 % showed that the nal program performed well in interpreting gestures, proving that it was possible the mobile robot control through human gestures without the need for external accessories to give it a better mobility and cost savings for maintain such a system. The great merit of the program was to assist capacity in demystifying the man set/machine therefore uses an easy and intuitive interface for control of mobile robots. Another important feature observed is that to control the mobile robot is not necessary to be close to the same, as to control the equipment is necessary to receive only the address that the Robotino passes to the program via network or Wi-Fi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O controle de robôs móveis não holonômicos apresenta como principal desafio o fato de estes sistemas não serem estabilizáveis em um ponto através de uma realimentação de estados suave e invariante no tempo, conforme o Teorema de Brockett. Para contornar este resultado, técnicas clássicas utilizam leis de controle variante no tempo ou não suaves (descontínuas). Entretanto, estas técnicas não prevêem durante o cálculo da lei de controle restrições nas variáveis do sistema e assim, muitas vezes, geram entradas de controle que são incompatíveis com uma implementação real. Neste trabalho são desenvolvidos algoritmos de controle preditivo baseado em modelo (MPC) para o controle de robôs móveis não holonômicos dotados de rodas. No MPC, restrições nas variáveis de estado e de controle podem ser consideradas durante o cálculo da lei de controle de uma forma bastante direta. Além disso, o MPC gera implicitamente uma lei de controle que respeita as condições de Brockett. Como o modelo do robô é não linear, é necessário um algoritmo de MPC não linear (NMPC). Dois objetivos são estudados: (1) estabilização em um ponto e (2) rastreamento de trajetória. Através de extensivos resultados de simulação, é mostrada a eficácia da técnica. Referente ao primeiro problema, é feita uma análise comparativa com algumas leis clássicas de controle de robôs móveis, mostrando que o MPC aplicado aqui apresenta uma melhor performance com relação às trajetórias de estado e de controle. No problema de rastreamento de trajetória, é desenvolvida uma técnica linear, alternativa ao NMPC, utilizando linearizações sucessivas ao longo da trajetória de referência, a fim de diminuir o esforço computacional necessário para o problema de otimização. Para os dois problemas, análises referentes ao esforço computacional são desenvolvidas com o intuito de mostrar a viabilidade das técnicas de MCP apresentadas aqui em uma implementação real.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is comprised by an interactive mobile robotics’ environment, focused in human-robot interaction. The system was developed to work in a smartphone, with Android operating system, embedded in a small size mobile robot. Information provided by the smartphone’s camera and microp hone, as well as by proximity sensors embedded in the robot, is used as inputs of a control architecture, implemented in software. It is a behavior-based and receptive to human commands control architecture, to assist the robot’s navigation. The robot is controlled by its own behaviors or by commands em it ted by humans

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AEDROMO (Experimental and Didactic Environment with Mobile Robots) is a versatile, user friendly and scalable environment that supports a wide range of experiments. In it there is an area that is similar to a desk where objects can interact with each other, including robots and other objects, and thus can perform numerous activities. In it's current state, AEDROMO has client computers that interact with the system through an interface, and thus realize the communication between the user and AEDROMO. This project offer support to create a new form of interface for AEDROMO and can therefore be used for devices running Android, the app developed in this project will serve as a basis for future work on this new interface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization of mobile robots in indoor environments finds lots of problems such as accumulated errors and the constant changes that occur at these places. A technique called global vision intends to localize robots using images acquired by cameras placed in such a way that covers the place where the robots movement takes place. Localization is obtained by marks put on top of the robot. Algorithms applied to the images search for the mark on top of the robot and by finding the mark they are able to get the position and orientation of the robot. Such techniques used to face some difficulties related with the hardware capacity, fact that limited their execution in real time. However, the technological advances of the last years changed that situation and enabling the development and execution of such algorithms in plain capacity. The proposal specified here intends to develop a mobile robot localization system at indoor environments using a technique called global vision to track the robot and acquire the images, all in real time, intending to improve the robot localization process inside the environment. Being a localization method that takes just actual information in its calculations, the robot localization using images fit into the needs of this kind of place. Besides, it enables more accurate results and in real time, what is exactly the museum application needs.