991 resultados para Control laws
Resumo:
This paper considers two aspects of the nonlinear H(infinity) control problem: the use of weighting functions for performance and robustness improvement, as in the linear case, and the development of a successive Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs equation that arises in the output-feedback case. Design of nonlinear H(infinity) controllers obtained by the well-established Taylor approximation and by the proposed Galerkin approximation method applied to a magnetic levitation system are presented for comparison purposes.
Resumo:
This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.
Resumo:
This report presents a study on the problem of spacecraft attitude control using magnetic actuators. Several existing approaches are reviewed and one control strategy is implemented and simulated. A time-varying feedback control law achieving inertial pointing for magnetically actuated spacecraft is implemented. The report explains the modeling of the spacecraft rigid body dynamics, kinematics and attitude control in detail. Besides the fact that control laws have been established for stabilization around local equilibrium, this report presents the results of a control law that yields a generic, global solution for attitude stabilization of a magnetically actuated spacecraft. The report also involves the use MATLAB as a tool for both modeling and simulation of the spacecraft and controller. In conclusion, the simulation outlines the performance of the controller in independently stabilizing the spacecraft in three mutually perpendicular directions.
Resumo:
This article describes the design of a linear observer–linear controller-based robust output feedback scheme for output reference trajectory tracking tasks in the case of nonlinear, multivariable, nonholonomic underactuated mobile manipulators. The proposed linear feedback scheme is based on the use of a classical linear feedback controller and suitably extended, high-gain, linear Generalized Proportional Integral (GPI) observers, thus aiding the linear feedback controllers to provide an accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and perturbation inputs. This information is used in the proposed feedback controller in (a) approximate, yet close, cancelations, as lumped unstructured time-varying terms, of the influence of the highly coupled nonlinearities, and (b) the devising of proper linear output feedback control laws based on the approximate estimates of the string of phase variables associated with the flat outputs simultaneously provided by the disturbance observers. Simulations reveal the effectiveness of the proposed approach.
Resumo:
The subject of this thesis is the real-time implementation of algebraic derivative estimators as observers in nonlinear control of magnetic levitation systems. These estimators are based on operational calculus and implemented as FIR filters, resulting on a feasible real-time implementation. The algebraic method provide a fast, non-asymptotic state estimation. For the magnetic levitation systems, the algebraic estimators may replace the standard asymptotic observers assuring very good performance and robustness. To validate the estimators as observers in closed-loop control, several nonlinear controllers are proposed and implemented in a experimental magnetic levitation prototype. The results show an excellent performance of the proposed control laws together with the algebraic estimators.
Resumo:
Mode of access: Internet.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.
Resumo:
This thesis argues the attitude control problem of nanosatellites, which has been a challenging issue over the years for the scientific community and still constitutes an active area of research. The interest is increasing as more than 70% of future satellite launches are nanosatellites. Therefore, new challenges appear with the miniaturisation of the subsystems and improvements must be reached. In this framework, the aim of this thesis is to develop novel control approaches for three-axis stabilisation of nanosatellites equipped with magnetorquers and reaction wheels, to improve the performance of the existent control strategies and demonstrate the stability of the system. In particular, this thesis is focused on the development of non-linear control techniques to stabilise full-actuated nanosatellites, and in the case of underactuation, in which the number of control variables is less than the degrees of freedom of the system. The main contributions are, for the first control strategy proposed, to demonstrate global asymptotic stability derived from control laws that stabilise the system in a target frame, a fixed direction of the orbit frame. Simulation results show good performance, also in presence of disturbances, and a theoretical selection of the magnetic control gain is given. The second control approach presents instead, a novel stable control methodology for three-axis stabilisation in underactuated conditions. The control scheme consists of the dynamical implementation of an attitude manoeuvre planning by means of a switching control logic. A detailed numerical analysis of the control law gains and the effect on the convergence time, total integrated and maximum torque is presented demonstrating the good performance and robustness also in the presence of disturbances.
Resumo:
OCEANS 2003. Proceedings (Volume:1 )
Resumo:
The Free Open Source Software (FOSS) seem far from the military field but in some cases, some technologies normally used for civilian purposes may have military applications. These products and technologies are called dual-use. Can we manage to combine FOSS and dual-use products? On one hand, we have to admit that this kind of association exists - dual-use software can be FOSS and many examples demonstrate this duality - but on the other hand, dual-use software available under free licenses lead us to ask many questions. For example, the dual-use export control laws aimed at stemming the proliferation of weapons of mass destruction. Dual-use export in United States (ITAR) and Europe (regulation 428/2009) implies as a consequence the prohibition or regulation of software exportation, involving the closing of source code. Therefore, the issues of exported softwares released under free licenses arises. If software are dual-use goods and serve for military purposes, they may represent a danger. By the rights granted to licenses to run, study, redistribute and distribute modified versions of the software, anyone can access the free dual-use software. So, the licenses themselves are not at the origin of the risk, it is actually linked to the facilitated access to source codes. Seen from this point of view, it goes against the dual-use regulation which allows states to control these technologies exportation. For this analysis, we will discuss about various legal questions and draft answers from either licenses or public policies in this respect.
Resumo:
Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional least-square method (LS). Among these the most important are: there are no restrictions on linearity or in the form which the parameters appears in the mathematical model describing the system, and it is not required that these parameters be time invariant. The EKF uses the statistical properties of the process and the observation noise, to produce estimates based on the mean square error of the estimates themselves. Differently, the LS minimizes a cost function based on the plant output behavior. Results for the estimation of some longitudinal aerodynamic derivatives from simulated data are presented.
Resumo:
Control of an industrial robot is mainly a problem of dynamics. It includes non-linearities, uncertainties and external perturbations that should be considered in the design of control laws. In this work, two control strategies based on variable structure controllers (VSC) and a PD control algorithm are compared in relation to the tracking errors considering friction. The controller's performances are evaluated by adding an static friction model. Simulations and experimental results show it is possible to diminish tracking errors by using a model based friction compensation scheme. A SCARA robot is used to illustrate the conclusions of this paper.
Resumo:
Contexte et objectifs. En 1995, le gouvernement canadien a promulgué la Loi C-68, rendant ainsi obligatoire l’enregistrement de toutes les armes à feu et affermissant les vérifications auprès des futurs propriétaires. Faute de preuves scientifiques crédibles, le potentiel de cette loi à prévenir les homicides est présentement remis en question. Tout en surmontant les biais potentiels retrouvés dans les évaluations antérieures, l’objectif de ce mémoire est d’évaluer l’effet de la Loi C-68 sur les homicides au Québec entre 1974 et 2006. Méthodologie. L’effet de la Loi C-68 est évalué à l’aide d’une analyse des bornes extrêmes. Les effets immédiats et graduels de la Loi sont évalués à l’aide de 372 équations. Brièvement, il s’agit d’analyses de séries chronologiques interrompues où toutes les combinaisons de variables indépendantes sont envisagées afin d’éviter les biais relatifs à une spécification arbitraire des modèles. Résultats. L’introduction de la Loi C-68 est associée à une baisse graduelle des homicides commis à l’aide d’armes longues (carabines et fusils de chasse), sans qu’aucun déplacement tactique ne soit observé. Les homicides commis par des armes à feu à autorisation restreinte ou prohibées semblent influencés par des facteurs différents. Conclusion. Les résultats suggèrent que le contrôle des armes à feu est une mesure efficace pour prévenir les homicides. L’absence de déplacement tactique suggère également que l’arme à feu constitue un important facilitateur et que les homicides ne sont pas tous prémédités. D’autres études sont toutefois nécessaires pour clairement identifier les mécanismes de la Loi responsables de la baisse des homicides.