911 resultados para Continuous-time Markov Chain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key problems in discussing stochastic monotonicity and duality for continuous time Markov chains are to give the criteria for existence and uniqueness and to construct the associated monotone processes in terms of their infinitesimal q -matrices. In their recent paper, Chen and Zhang [6] discussed these problems under the condition that the given q-matrix Q is conservative. The aim of this paper is to generalize their results to a more general case, i.e., the given q-matrix Q is not necessarily conservative. New problems arise 'in removing the conservative assumption. The existence and uniqueness criteria for this general case are given in this paper. Another important problem, the construction of all stochastically monotone Q-processes, is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a Bayesian method for investigating correlated evolution of discrete binary traits on phylogenetic trees. The method fits a continuous-time Markov model to a pair of traits, seeking the best fitting models that describe their joint evolution on a phylogeny. We employ the methodology of reversible-jump ( RJ) Markov chain Monte Carlo to search among the large number of possible models, some of which conform to independent evolution of the two traits, others to correlated evolution. The RJ Markov chain visits these models in proportion to their posterior probabilities, thereby directly estimating the support for the hypothesis of correlated evolution. In addition, the RJ Markov chain simultaneously estimates the posterior distributions of the rate parameters of the model of trait evolution. These posterior distributions can be used to test among alternative evolutionary scenarios to explain the observed data. All results are integrated over a sample of phylogenetic trees to account for phylogenetic uncertainty. We implement the method in a program called RJ Discrete and illustrate it by analyzing the question of whether mating system and advertisement of estrus by females have coevolved in the Old World monkeys and great apes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uniformization method (also known as randomization) is a numerically stable algorithm for computing transient distributions of a continuous time Markov chain. When the solution is needed after a long run or when the convergence is slow, the uniformization method involves a large number of matrix-vector products. Despite this, the method remains very popular due to its ease of implementation and its reliability in many practical circumstances. Because calculating the matrix-vector product is the most time-consuming part of the method, overall efficiency in solving large-scale problems can be significantly enhanced if the matrix-vector product is made more economical. In this paper, we incorporate a new relaxation strategy into the uniformization method to compute the matrix-vector products only approximately. We analyze the error introduced by these inexact matrix-vector products and discuss strategies for refining the accuracy of the relaxation while reducing the execution cost. Numerical experiments drawn from computer systems and biological systems are given to show that significant computational savings are achieved in practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an ``adaptive threshold,'' i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In electronic support, receivers must maintain surveillance over the very wide portion of the electromagnetic spectrum in which threat emitters operate. A common approach is to use a receiver with a relatively narrow bandwidth that sweeps its centre frequency over the threat bandwidth to search for emitters. The sequence and timing of changes in the centre frequency constitute a search strategy. The search can be expedited, if there is intelligence about the operational parameters of the emitters that are likely to be found. However, it can happen that the intelligence is deficient, untrustworthy or absent. In this case, what is the best search strategy to use? A random search strategy based on a continuous-time Markov chain (CTMC) is proposed. When the search is conducted for emitters with a periodic scan, it is shown that there is an optimal configuration for the CTMC. It is optimal in the sense that the expected time to intercept an emitter approaches linearity most quickly with respect to the emitter's scan period. A fast and smooth approach to linearity is important, as other strategies can exhibit considerable and abrupt variations in the intercept time as a function of scan period. In theory and numerical examples, the optimum CTMC strategy is compared with other strategies to demonstrate its superior properties.