988 resultados para Context heterogeneity
Resumo:
One of the current challenges of Ubiquitous Computing is the development of complex applications, those are more than simple alarms triggered by sensors or simple systems to configure the environment according to user preferences. Those applications are hard to develop since they are composed by services provided by different middleware and it is needed to know the peculiarities of each of them, mainly the communication and context models. This thesis presents OpenCOPI, a platform which integrates various services providers, including context provision middleware. It provides an unified ontology-based context model, as well as an environment that enable easy development of ubiquitous applications via the definition of semantic workflows that contains the abstract description of the application. Those semantic workflows are converted into concrete workflows, called execution plans. An execution plan consists of a workflow instance containing activities that are automated by a set of Web services. OpenCOPI supports the automatic Web service selection and composition, enabling the use of services provided by distinct middleware in an independent and transparent way. Moreover, this platform also supports execution adaptation in case of service failures, user mobility and degradation of services quality. The validation of OpenCOPI is performed through the development of case studies, specifically applications of the oil industry. In addition, this work evaluates the overhead introduced by OpenCOPI and compares it with the provided benefits, and the efficiency of OpenCOPI s selection and adaptation mechanism
Resumo:
Difference and Dispersion is the fourth in a series of annual research papers produced by doctoral students from The Graduate School of Education, The University of Queensland, following their presentation at the School’s annual Postgraduate Research Conference in Education. The work featured herein celebrates the diversity of cultural and disciplinary backgrounds of education researchers who come from as far afield as Germany, Hong Kong, China, Nigeria, Russia, Singapore, Thailand and of course different parts of Australia. In keeping with a postmodern epistemology, ‘difference’ and ‘dispersion’ are key themes in apprehending the multiplicity of their research topics, methodologies, methods and speaking/writing positions. From widely differing contexts and situations, these writers address the consequences, implications and possibilities for education at the beginning of the third millennium. Their interest ranges from location-specific issues in schools and classrooms, change in learning contexts and processes, educational discourses and relations of power in diverse geographical settings, and the differing articulations of the local and the global in situated policy contexts. Conceived and developed in a spirit of ongoing dialogue with and insight to alternative views and visions of education and society, this edited collection exemplifies the quality in diversity and the high levels of scholarship and supervision at one of Australia’s finest Graduate Schools of Education.
Resumo:
The dynamic capabilities view (DCV) focuses on renewal of firms’ strategic knowledge resources so as to sustain competitive advantage within turbulent markets. Within the context of the DCV, the focus of knowledge management (KM) is to develop the KMC through deploying knowledge governance mechanisms that are conducive to facilitating knowledge processes so as to produce superior business performance over time. The essence of KM performance evaluation is to assess how well the KMC is configured with knowledge governance mechanisms and processes that enable a firm to achieve superior performance through matching its knowledge base with market needs. However, little research has been undertaken to evaluate KM performance from the DCV perspective. This study employed a survey study design and adopted hypothesis-testing approaches to develop a capability-based KM evaluation framework (CKMEF) that upholds the basic assertions of the DCV. Under the governance of the framework, a KM index (KMI) and a KM maturity model (KMMM) were derived not only to indicate the extent to which a firm’s KM implementations fulfill its strategic objectives, and to identify the evolutionary phase of its KMC, but also to bench-mark the KMC in the research population. The research design ensured that the evaluation framework and instruments have statistical significance and good generalizabilty to be applied in the research population, namely construction firms operating in the dynamic Hong Kong construction market. The study demonstrated the feasibility of quantitatively evaluating the development of the KMC and revealing the performance heterogeneity associated with the development.
Resumo:
In the United States, poverty has been historically higher and disproportionately concentrated in the American South. Despite this fact, much of the conventional poverty literature in the United States has focused on urban poverty in cities, particularly in the Northeast and Midwest. Relatively less American poverty research has focused on the enduring economic distress in the South, which Wimberley (2008:899) calls “a neglected regional crisis of historic and contemporary urgency.” Accordingly, this dissertation contributes to the inequality literature by focusing much needed attention on poverty in the South.
Each empirical chapter focuses on a different aspect of poverty in the South. Chapter 2 examines why poverty is higher in the South relative to the Non-South. Chapter 3 focuses on poverty predictors within the South and whether there are differences in the sub-regions of the Deep South and Peripheral South. These two chapters compare the roles of family demography, economic structure, racial/ethnic composition and heterogeneity, and power resources in shaping poverty. Chapter 4 examines whether poverty in the South has been shaped by historical racial regimes.
The Luxembourg Income Study (LIS) United States datasets (2000, 2004, 2007, 2010, and 2013) (derived from the U.S. Census Current Population Survey (CPS) Annual Social and Economic Supplement) provide all the individual-level data for this study. The LIS sample of 745,135 individuals is nested in rich economic, political, and racial state-level data compiled from multiple sources (e.g. U.S. Census Bureau, U.S. Department of Agriculture, University of Kentucky Center for Poverty Research, etc.). Analyses involve a combination of techniques including linear probability regression models to predict poverty and binary decomposition of poverty differences.
Chapter 2 results suggest that power resources, followed by economic structure, are most important in explaining the higher poverty in the South. This underscores the salience of political and economic contexts in shaping poverty across place. Chapter 3 results indicate that individual-level economic factors are the largest predictors of poverty within the South, and even more so in the Deep South. Moreover, divergent results between the South, Deep South, and Peripheral South illustrate how the impact of poverty predictors can vary in different contexts. Chapter 4 results show significant bivariate associations between historical race regimes and poverty among Southern states, although regression models fail to yield significant effects. Conversely, historical race regimes do have a small, but significant effect in explaining the Black-White poverty gap. Results also suggest that employment and education are key to understanding poverty among Blacks and the Black-White poverty gap. Collectively, these chapters underscore why place is so important for understanding poverty and inequality. They also illustrate the salience of micro and macro characteristics of place for helping create, maintain, and reproduce systems of inequality across place.
Resumo:
Background: Ineffective risk stratification can delay diagnosis of serious disease in patients with hematuria. We applied a systems biology approach to analyze clinical, demographic and biomarker measurements (n = 29) collected from 157 hematuric patients: 80 urothelial cancer (UC) and 77 controls with confounding pathologies.
Methods: On the basis of biomarkers, we conducted agglomerative hierarchical clustering to identify patient and biomarker clusters. We then explored the relationship between the patient clusters and clinical characteristics using Chi-square analyses. We determined classification errors and areas under the receiver operating curve of Random Forest Classifiers (RFC) for patient subpopulations using the biomarker clusters to reduce the dimensionality of the data.
Results: Agglomerative clustering identified five patient clusters and seven biomarker clusters. Final diagnoses categories were non-randomly distributed across the five patient clusters. In addition, two of the patient clusters were enriched with patients with ‘low cancer-risk’ characteristics. The biomarkers which contributed to the diagnostic classifiers for these two patient clusters were similar. In contrast, three of the patient clusters were significantly enriched with patients harboring ‘high cancer-risk” characteristics including proteinuria, aggressive pathological stage and grade, and malignant cytology. Patients in these three clusters included controls, that is, patients with other serious disease and patients with cancers other than UC. Biomarkers which contributed to the diagnostic classifiers for the largest ‘high cancer- risk’ cluster were different than those contributing to the classifiers for the ‘low cancer-risk’ clusters. Biomarkers which contributed to subpopulations that were split according to smoking status, gender and medication were different.
Conclusions: The systems biology approach applied in this study allowed the hematuric patients to cluster naturally on the basis of the heterogeneity within their biomarker data, into five distinct risk subpopulations. Our findings highlight an approach with the promise to unlock the potential of biomarkers. This will be especially valuable in the field of diagnostic bladder cancer where biomarkers are urgently required. Clinicians could interpret risk classification scores in the context of clinical parameters at the time of triage. This could reduce cystoscopies and enable priority diagnosis of aggressive diseases, leading to improved patient outcomes at reduced costs. © 2013 Emmert-Streib et al; licensee BioMed Central Ltd.
Resumo:
This paper proposes a discrete mixture model which assigns individuals, up to a probability, to either a class of random utility (RU) maximizers or a class of random regret (RR) minimizers, on the basis of their sequence of observed choices. Our proposed model advances the state of the art of RU-RR mixture models by (i) adding and simultaneously estimating a membership model which predicts the probability of belonging to a RU or RR class; (ii) adding a layer of random taste heterogeneity within each behavioural class; and (iii) deriving a welfare measure associated with the RU-RR mixture model and consistent with referendum-voting, which is the adequate mechanism of provision for such local public goods. The context of our empirical application is a stated choice experiment concerning traffic calming schemes. We find that the random parameter RU-RR mixture model not only outperforms its fixed coefficient counterpart in terms of fit-as expected-but also in terms of plausibility of membership determinants of behavioural class. In line with psychological theories of regret, we find that, compared to respondents who are familiar with the choice context (i.e. the traffic calming scheme), unfamiliar respondents are more likely to be regret minimizers than utility maximizers. © 2014 Elsevier Ltd.
Resumo:
Recent advances in hardware development coupled with the rapid adoption and broad applicability of cloud computing have introduced widespread heterogeneity in data centers, significantly complicating the management of cloud applications and data center resources. This paper presents the CACTOS approach to cloud infrastructure automation and optimization, which addresses heterogeneity through a combination of in-depth analysis of application behavior with insights from commercial cloud providers. The aim of the approach is threefold: to model applications and data center resources, to simulate applications and resources for planning and operation, and to optimize application deployment and resource use in an autonomic manner. The approach is based on case studies from the areas of business analytics, enterprise applications, and scientific computing.
Resumo:
In the vision of Mark Weiser on ubiquitous computing, computers are disappearing from the focus of the users and are seamlessly interacting with other computers and users in order to provide information and services. This shift of computers away from direct computer interaction requires another way of applications to interact without bothering the user. Context is the information which can be used to characterize the situation of persons, locations, or other objects relevant for the applications. Context-aware applications are capable of monitoring and exploiting knowledge about external operating conditions. These applications can adapt their behaviour based on the retrieved information and thus to replace (at least a certain amount) the missing user interactions. Context awareness can be assumed to be an important ingredient for applications in ubiquitous computing environments. However, context management in ubiquitous computing environments must reflect the specific characteristics of these environments, for example distribution, mobility, resource-constrained devices, and heterogeneity of context sources. Modern mobile devices are equipped with fast processors, sufficient memory, and with several sensors, like Global Positioning System (GPS) sensor, light sensor, or accelerometer. Since many applications in ubiquitous computing environments can exploit context information for enhancing their service to the user, these devices are highly useful for context-aware applications in ubiquitous computing environments. Additionally, context reasoners and external context providers can be incorporated. It is possible that several context sensors, reasoners and context providers offer the same type of information. However, the information providers can differ in quality levels (e.g. accuracy), representations (e.g. position represented in coordinates and as an address) of the offered information, and costs (like battery consumption) for providing the information. In order to simplify the development of context-aware applications, the developers should be able to transparently access context information without bothering with underlying context accessing techniques and distribution aspects. They should rather be able to express which kind of information they require, which quality criteria this information should fulfil, and how much the provision of this information should cost (not only monetary cost but also energy or performance usage). For this purpose, application developers as well as developers of context providers need a common language and vocabulary to specify which information they require respectively they provide. These descriptions respectively criteria have to be matched. For a matching of these descriptions, it is likely that a transformation of the provided information is needed to fulfil the criteria of the context-aware application. As it is possible that more than one provider fulfils the criteria, a selection process is required. In this process the system has to trade off the provided quality of context and required costs of the context provider against the quality of context requested by the context consumer. This selection allows to turn on context sources only if required. Explicitly selecting context services and thereby dynamically activating and deactivating the local context provider has the advantage that also the resource consumption is reduced as especially unused context sensors are deactivated. One promising solution is a middleware providing appropriate support in consideration of the principles of service-oriented computing like loose coupling, abstraction, reusability, or discoverability of context providers. This allows us to abstract context sensors, context reasoners and also external context providers as context services. In this thesis we present our solution consisting of a context model and ontology, a context offer and query language, a comprehensive matching and mediation process and a selection service. Especially the matching and mediation process and the selection service differ from the existing works. The matching and mediation process allows an autonomous establishment of mediation processes in order to transfer information from an offered representation into a requested representation. In difference to other approaches, the selection service selects not only a service for a service request, it rather selects a set of services in order to fulfil all requests which also facilitates the sharing of services. The approach is extensively reviewed regarding the different requirements and a set of demonstrators shows its usability in real-world scenarios.
Resumo:
The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time
Resumo:
Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.
Resumo:
In this paper we present results from two choice experiments (CE), designed to take account of the different negative externalities associated with pesticide use in agricultural production. For cereal production, the most probable impact of pesticide use is a reduction in environmental quality. For fruit and vegetable production, the negative externality is on consumer health. Using latent class models we find evidence of the presence of preference heterogeneity in addition to reasonably high willingness to pay (WTP) estimates for a reduction in the use of pesticides for both environmental quality and consumer health. To place our WTP estimates in a policy context we convert them into an equivalent pesticide tax by type of externality. Our tax estimates suggest that pesticide taxes based on the primary externality resulting from a particular mode of agricultural production are a credible policy option that warrants further consideration.
Resumo:
Context Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations. Objective To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important for maintaining diverse populations in wooded-agricultural environments. Methods Birds were sampled from woodlands in 58 2 x 2 km tetrads across southern Britain. Landscape heterogeneity was quantified for each tetrad. Bird assemblage response was determined using redundancy analysis combined with variation partitioning and response trait analyses. Results For woodland bird assemblages, the independent explanatory importance of landscape composition and landscape configuration variables were closely interrelated. When considered simultaneously during variation partitioning, the community response was better represented by compositional variables. Different species responded to different landscape features and this could be explained by traits relating to woodland association, foraging strata and nest location. Ubiquitous, generalist species, many of which were hole-nesters or ground foragers, correlated positively with urban landcover while specialists of broadleaved woodland avoided landscapes containing urban areas. Species typical of coniferous woodland correlated with large conifer plantations. Conclusions At the 2 x 2 km scale, there was evidence that the availability of resources provided by proximate landcover types was highly important for shaping woodland bird assemblages. Further research to disentangle the effects of composition and configuration at different spatial scales is advocated.
Resumo:
Includes bibliography.
Resumo:
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.
Resumo:
Over the past three decades, the decline and altered spatial distribution of the western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to changes in the distribution or abundance of their prey due to the cumulative effects of fisheries and environmental perturbations. During this period, dietary prey occurrence and diet diversity were related to population decline within metapopulation regions of the western stock of Steller sea lions, suggesting that environmental conditions may be variable among regions. The objective of this study, therefore, was to examine regional differences in the spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within the context of recent measures of diet diversity and population trajectories. Habitat use was assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile Steller sea lions (n = 45) over a five-year period (2000–2004) within four regions of the western stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska. Areas used by sea lions during summer months (June, July, and August) were demarcated using satellite telemetry data and characterized by environmental variables (sea surface temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends among regions were fairly consistent with trends reported for diet studies, possibly indicating a link between environmental diversity, prey diversity, and distribution or abundance of Steller sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not consistent for chl a, and there appeared to be an ecological threshold. Understanding how Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful for implementing ecosystem management approaches and developing additional conservation strategies.