997 resultados para Conservation equation
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.
Resumo:
The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.
Resumo:
The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
The pivotal point of the paper is to discuss the behavior of temperature, pressure, energy density as a function of volume along with determination of caloric EoS from following two model: w(z)=w (0)+w (1)ln(1+z) & . The time scale of instability for this two models is discussed. In the paper we then generalize our result and arrive at general expression for energy density irrespective of the model. The thermodynamical stability for both of the model and the general case is discussed from this viewpoint. We also arrive at a condition on the limiting behavior of thermodynamic parameter to validate the third law of thermodynamics and interpret the general mathematical expression of integration constant U (0) (what we get while integrating energy conservation equation) physically relating it to number of micro states. The constraint on the allowed values of the parameters of the models is discussed which ascertains stability of universe. The validity of thermodynamical laws within apparent and event horizon is discussed.
Resumo:
Phototaxis is a directed swimming response dependent upon the light intensity sensed by micro-organisms. Positive (negative) phototaxis denotes the motion directed towards (away from) the source of light. Using the phototaxis model of Ghorai, Panda, and Hill ''Bioconvection in a suspension of isotropically scattering phototactic algae,'' Phys. Fluids 22, 071901 (2010)], we investigate two-dimensional phototactic bioconvection in an absorbing and isotropic scattering suspension in the nonlinear regime. The suspension is confined by a rigid bottom boundary, and stress-free top and lateral boundaries. The governing equations for phototactic bioconvection consist of Navier-Stokes equations for an incompressible fluid coupled with a conservation equation for micro-organisms and the radiative transfer equation for light transport. The governing system is solved efficiently using a semi-implicit second-order accurate conservative finite-difference method. The radiative transfer equation is solved by the finite volume method using a suitable step scheme. The resulting bioconvective patterns differ qualitatively from those found by Ghorai and Hill ''Penetrative phototactic bioconvection,'' Phys. Fluids 17, 074101 (2005)] at a higher critical wavelength due to the effects of scattering. The solutions show transition from steady state to periodic oscillations as the governing parameters are varied. Also, we notice the accumulation of micro-organisms in two horizontal layers at two different depths via their mean swimming orientation profile for some governing parameters at a higher scattering albedo. (C) 2013 AIP Publishing LLC.
Resumo:
Based on the first-order upwind and second-order central type of finite volume( UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from 0.3 to 0. 8 and convergence perform excellent with Reynolds number variation from 102 to 104.
Resumo:
对双曲守恒型方程,将其一阶迎风格式空间差商的常系数摄动展开为时间步长和空间步长的幂级数,通过确定幂级数系数而获得二阶精度的摄动有限差分(PFD)格式。进而从双曲守恒型方程的通量分裂型一阶迎风格式出发,通过娄似的摄动展开方法,获得空间精度为二阶的通量分裂形式的摄动有限差分(FPFD)格式。这两类格式保留了一阶守恒迎风格式的简洁结构形式,使用三节点即可达到二阶精度,又避免了三点二阶格式的非物理数值振荡。并将这两类格式推广应用到双曲守恒型方程组,最后通过模型方程和一维激波管流动的数值算例验证了格式的高精度、高分辨率性质。
Resumo:
Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.
Resumo:
In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier-Stokes equations coupled with the energy conservation equation are solved by the finite-difference front-tracking scheme. The axisymmetric model is adopted in Our simulations, and the drops are assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the classical initial condition with a uniform temperature gradient. The detailed discussions and physical explanations of migration phenomena are presented for the different values of (1) the Marangoni numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also discuss the influence of initial conditions on the thermocapillary migrations. (C) 2008 American Institute of Physics.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.
Resumo:
By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.
Resumo:
A conservation equation for topological charges of phase singularities (scroll and spiral waves) in excitable media is given. It provides some topological properties of scroll (spiral) waves: for example, the topological charge of the generated or annihilated spiral pair must be opposite. Additionally, we obtain another equation on scroll waves, which shows that singular filaments of scroll waves occur on a set of one-dimensional curves which may be either closed loops or infinite lines.