941 resultados para Conditional Heteroskedasticity
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
This paper confirms presence of GARCH(1,1) effect on stock return time series of Vietnam’s newborn stock market. We performed tests on four different time series, namely market returns (VN-Index), and return series of the first four individual stocks listed on the Vietnamese exchange (the Ho Chi Minh City Securities Trading Center) since August 2000. The results have been quite relevant to previously reported empirical studies on different markets.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo modelizar el comportamiento estadístico de las series financieras. En este sentido, se puede afirmar que los modelos que mejor recogen las especiales características de estas series son los modelos de heterocedasticidad condicionada en tiempo discreto,si los intervalos de tiempo en los que se recogen los datos lo permiten, y en tiempo continuo si tenemos datos diarios o datos intradía. Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos para la estimación de los parámetros de los modelos GARCH en tiempo discreto (Bollerslev (1986)) y COGARCH en tiempo continuo (Kluppelberg et al. (2004)). En el capítulo 1 se introducen las características de las series financieras y se presentan los modelos ARCH, GARCH y COGARCH, así como sus principales propiedades. Mandelbrot (1963) destacó que las series financieras no presentan estacionariedad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados sí están correlacionados. Señaló también que la volatilidad que presentan no es constante y que aparecen clusters de volatilidad. Observó la falta de normalidad de las series financieras, debida principalmente a su comportamiento leptocúrtico, y también destacó los efectos estacionales que presentan las series, analizando como se ven afectadas por la época del año o el día de la semana. Posteriormente Black (1976) completó la lista de características especiales incluyendo los denominados leverage effects relacionados con como las fluctuaciones positivas y negativas de los precios de los activos afectan a la volatilidad de las series de forma distinta.
Resumo:
This paper considers forecasting the conditional mean and variance from a single-equation dynamic model with autocorrelated disturbances following an ARMA process, and innovations with time-dependent conditional heteroskedasticity as represented by a linear GARCH process. Expressions for the minimum MSE predictor and the conditional MSE are presented. We also derive the formula for all the theoretical moments of the prediction error distribution from a general dynamic model with GARCH(1, 1) innovations. These results are then used in the construction of ex ante prediction confidence intervals by means of the Cornish-Fisher asymptotic expansion. An empirical example relating to the uncertainty of the expected depreciation of foreign exchange rates illustrates the usefulness of the results. © 1992.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
This thesis examines the effects of macroeconomic factors on inflation level and volatility in the Euro Area to improve the accuracy of inflation forecasts with econometric modelling. Inflation aggregates for the EU as well as inflation levels of selected countries are analysed, and the difference between these inflation estimates and forecasts are documented. The research proposes alternative models depending on the focus and the scope of inflation forecasts. I find that models with a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) in mean process have better explanatory power for inflation variance compared to the regular GARCH models. The significant coefficients are different in EU countries in comparison to the aggregate EU-wide forecast of inflation. The presence of more pronounced GARCH components in certain countries with more stressed economies indicates that inflation volatility in these countries are likely to occur as a result of the stressed economy. In addition, other economies in the Euro Area are found to exhibit a relatively stable variance of inflation over time. Therefore, when analysing EU inflation one have to take into consideration the large differences on country level and focus on those one by one.
Resumo:
Emerging markets have received wide attention from investors around the globe because of their return potential and risk diversification. This research examines the selection and timing performance of Canadian mutual funds which invest in fixed-income and equity securities in emerging markets. We use (un)conditional two- and five-factor benchmark models that accommodate the dynamics of returns in emerging markets. We also adopt the cross-sectional bootstrap methodology to distinguish between ‘skill’ and ‘luck’ for individual funds. All the tests are conducted using a comprehensive data set of bond and equity emerging funds over the period of 1989-2011. The risk-adjusted measures of performance are estimated using the least squares method with the Newey-West adjustment for standard errors that are robust to conditional heteroskedasticity and autocorrelation. The performance statistics of the emerging funds before (after) management-related costs are insignificantly positive (significantly negative). They are sensitive to the chosen benchmark model and conditional information improves selection performance. The timing statistics are largely insignificant throughout the sample period and are not sensitive to the benchmark model. Evidence of timing and selecting abilities is obtained in a small number of funds which is not sensitive to the fees structure. We also find evidence that a majority of individual funds provide zero (very few provide positive) abnormal return before fees and a significantly negative return after fees. At the negative end of the tail of performance distribution, our resampling tests fail to reject the role of bad luck in the poor performance of funds and we conclude that most of them are merely ‘unlucky’.
Resumo:
L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.
Resumo:
In 2007 futures contracts were introduced based upon the listed real estate market in Europe. Following their launch they have received increasing attention from property investors, however, few studies have considered the impact their introduction has had. This study considers two key elements. Firstly, a traditional Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, the approach of Bessembinder & Seguin (1992) and the Gray’s (1996) Markov-switching-GARCH model are used to examine the impact of futures trading on the European real estate securities market. The results show that futures trading did not destabilize the underlying listed market. Importantly, the results also reveal that the introduction of a futures market has improved the speed and quality of information flowing to the spot market. Secondly, we assess the hedging effectiveness of the contracts using two alternative strategies (naïve and Ordinary Least Squares models). The empirical results also show that the contracts are effective hedging instruments, leading to a reduction in risk of 64 %.
Resumo:
Real estate securities have a number of distinct characteristics that differentiate them from stocks generally. Key amongst them is that under-pinning the firms are both real as well as investment assets. The connections between the underlying macro-economy and listed real estate firms is therefore clearly demonstrated and of heightened importance. To consider the linkages with the underlying macro-economic fundamentals we extract the ‘low-frequency’ volatility component from aggregate volatility shocks in 11 international markets over the 1990-2014 period. This is achieved using Engle and Rangel’s (2008) Spline-Generalized Autoregressive Conditional Heteroskedasticity (Spline-GARCH) model. The estimated low-frequency volatility is then examined together with low-frequency macro data in a fixed-effect pooled regression framework. The analysis reveals that the low-frequency volatility of real estate securities has strong and positive association with most of the macroeconomic risk proxies examined. These include interest rates, inflation, GDP and foreign exchange rates.
Resumo:
Este trabalho propõe um instrumento capaz de absorver choques no par BRL/USD, garantindo ao seu detentor a possibilidade de realizar a conversão entre essas moedas a uma taxa observada recentemente. O Volatility Triggered Range Forward assemelha-se a um instrumento forward comum, cujo preço de entrega não é conhecido inicialmente, mas definido no momento em que um nível de volatilidade pré-determinado for atingido na cotação das moedas ao longo da vida do instrumento. Seu cronograma de ajustes pode ser definido para um número qualquer de períodos. Seu apreçamento e controle de riscos é baseado em uma árvore trinomial ponderada entre dois possíveis regimes de volatilidade. Esses regimes são determinados após um estudo na série BRL/USD no período entre 2003 e 2009, basedo em um modelo Switching Autoregressive Conditional Heteroskedasticity (SWARCH).