997 resultados para Concrete permeability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The permeability of asphalt concrete has been the subject of much study by pavement engineers over the last decade. The work undertaken has tended to focus on high air voids as the primary indicator of permeable asphalt concrete. This paper presents a simple approach for understanding the parameters that affect permeability. Principles explained by Taylor in 1956 in channel theory work for soils are used to derive a new parameter-representative pore size. Representative pore size is related to the air voids in the compacted mix and the D75 of the asphalt mix grading curve. Collected Superpave permeability data from published literature and data collected by the writers at the Queensland Department of Transport and Main Roads is shown to be better correlated with representative pore size than air voids, reducing the scatter considerably. Using the database of collected field and laboratory permeability values an equation is proposed that pavement engineers can use to estimate the permeability of in-place pavements. © 2011 ASCE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite being exposed to the harsh sea-spray environment of the North Sea at Arbroath, Scotland, for over 63 years, many of the reinforced concrete precast beam elements of the 1.5 km long promenade railing are still in very good condition and show little evidence of reinforcement corrosion. In contrast, railing replacements constructed in about 1968 and in 1993 are almost all badly cracked as a result of extensive corrosion of the longitudinal reinforcement. This is despite the newer concrete appearing to be of better quality than the 1943 concrete. Statistics for maximum crack width for each of the three populations, based on measurements made in 2004 and in 2006, are presented. In situ and laboratory measurements show that the 1943 concrete appears to have high permeability but it also shows high electrical resistivity. Chloride penetration measurements show the 1943 and 1993 concretes to have similar chloride profiles and similar chloride concentrations at the reinforcement bars. This is inconsistent with the 1943 beams showing much less reinforcement corrosion than their later replacements and casts doubt on the conventional practice for durability design focusing on reducing concrete permeability through denser concretes or greater cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As part of a UK-China science bridge project - a UK government funded initiative linking leading universities and businesses in selective partnering countries in 2009 a collaborative research programme was initiated between Queen's University and the Research Institute of High Performance Concrete (part of the Central Research Institute of Building and Construction) in Beijing.

For further details email b.magee@ulster.ac.uk

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The occurrence of spalling is a major factor in determining the fire resistance of concrete constructions. The apparently random occurrence of spalling has limited the development and application of fire resistance modelling for concrete structures. This Thesis describes an experimental investigation into the spalling of concrete on exposure to elevated temperatures. It has been shown that spalling may be categorised into four distinct types, aggregate spalling, corner spalling, surface spalling and explosive spalling. Aggregate spalling has been found to be a form of shear failure of aggregates local to the heated surface. The susceptibility of any particular concrete to aggregate spalling can be quantified from parameters which include the coefficients of thermal expansion of both the aggregate and the surrounding mortar, the size and thermal diffusivity of the aggregate and the rate of heating. Corner spalling, which is particularly significant for the fire resistance of concrete columns, is a result of concrete losing its tensile strength at elevated temperatures. Surface spalling is the result of excessive pore pressures within heated concrete. An empirical model has been developed to allow quantification of the pore pressures and a material failure model proposed. The dominant parameters are rate of heating, pore saturation and concrete permeability. Surface spalling may be alleviated by limiting pore pressure development and a number of methods to this end have been evaluated. Explosive spalling involves the catastrophic failure of a concrete element and may be caused by either of two distinct mechanisms. In the first instance, excessive pore pressures can cause explosive spalling, although the effect is limited principally to unloaded or relatively small specimens. A second cause of explosive spalling is where the superimposition of thermally induced stresses on applied load stresses exceed the concrete's strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for alternative materials with lower density, reduction in heat transfer and propagation of noise associated with the ease of handling and application in concrete structures, represents an enormous challenge in the formulation and knowledge of the performance of self-compacting lightweight concrete, which has technology little known nationally, and appears on the international scene as an innovative material and alternative to conventional concrete. Based on these, this study set out to study self-compacting lightweight concrete made with two distinct grades of expanded clay associated with the addition of plasticizing/superplasticizers additives and mineral additions of metakaolin and bagasse ash of sugar cane. There is also an object of study, evaluation of pozzolanic activity of mineral admixtures and their influence on the durability characteristics of concrete. The rheological, physical, mechanical and microstructural analysis in this study served as basis in the classification of concretes autoadensáveis, targeting the national technical requirements for their classification in the category autoadensável and lightweight structural. The inclusion of mineral admixtures (metakaolin and bagasse ash of sugar cane), partial replacement of cement, pozzolanic activity and demonstrated maintenance of mechanical properties through the filler effect, a reduction of up to 76% of the nitrogen gas permeability in blend with 20% bagasse ash. All concretes had rheology (cohesion and consistency) suitable for self-adensability as well as strength and density inherent structural lightweight concrete without presenting phenomena of segregation and exudation

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an experimental study to evaluate effect of cumulative lightweight aggregate (LWA) content (including lightweight sand) in concrete [water/cement ratio (w/c) = 0.38] on its water absorption, water permeability, and resistance to chloride-ion penetration. Rapid chloride penetrability test (ASTM C 1202), rapid migration test (NT Build 492), and salt ponding test (AASHTO T 259) were conducted to evaluate the concrete resistance to chloride-ion penetration. The results were compared with those of a cement paste and a control normal weight aggregate concrete (NWAC) with the same w/c and a NWAC (w/c = 0.54) with 28-day compressive strength similar to some of the lightweight aggregate concrete (LWAC). Results indicate that although the total charge passed, migration coefficient, and diffusion coefficient of the LWAC were not significantly different from those of NWAC with the same w/c of 0.38, resistance of the LWAC to chloride penetration decreased with increase in the cumulative LWA content in the concretes. The water penetration depth under pressure and water sorptivity showed, in general, similar trends. The LWAC with only coarse LWA had similar water sorptivity, water permeability coefficient, and resistance to chloride-ion penetration compared to NWAC with similar w/c. The LWAC had lower water sorptivity, water permeability and higher resistance to chloride-ion penetration than the NWAC with similar 28-day strength but higher w/c. Both the NWAC and LWAC had lower sorptivity and higher resistance to chloride-ion penetration than the cement paste with similar w/c.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an experimental study on the effect of presoaked lightweight aggregates (LWAs) for internal curing on water permeability, water absorption and resistance of concrete to chloride-ion penetration in comparison with those of a control concrete and a concrete with shrinkage reducing admixture (SRA) of similar water/cement ratios (w/c). In general, the concretes with LWA particles had initial water absorption, sorptivity and water permeability similar to or lower than those of the control concrete and the concrete with SRA. The charges passed, chloride migration coefficient and chloride diffusion coefficient of such concretes were in the same order as those of the control concrete and the concrete with SRA. However, the incorporation of the LWAs for internal curing reduced unit weight, compressive strength and elastic modulus of the concrete. Comparing the LWAs of different sizes for internal curing, finer particles were more efficient in reducing the shrinkage and generally resulted in less reduction in the unit weight, compressive strength, and elastic modulus. However, the increase in the more porous crushed LW particles in concrete seems to increase the penetration of chloride ions in the concrete. The concrete with SRA had initial water absorption, sorptivity, water permeability and resistance to chloride ion penetration comparable with those of the control concrete. The use of SRA in concrete does not affect the elastic modulus of the concrete, except for a minor influence on the compressive strength of the concrete.