888 resultados para Complexidade computacional


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Estatística é uma ferramenta indispensável em todos os campos científicos. A Estatística descritiva é usada para sintetizar dados. O principal problema desta área está relacionado aos valores de uma amostra, os quais geralmente possuem erros que ocorrem durante a obtenção dos dados. Um dos objetivos deste trabalho é apresentar uma forma de representação para os valores amostrais que considera os erros contidos nestes valores. Esta representação é realizada através de intervalos. A literatura mostra que foram realizadas pesquisas somente em problemas de calcular os valores intervalares das medidas de dispersão variância, covariância e coeficiente de correlação, que a utilização da computação intervalar na solução de problemas de medidas de dispersão intervalar sempre fornece solução com intervalos superestimados (intervalos com amplitude grande), e que ao procurar uma solução com intervalos de amplitude pequena (através da computação da imagem intervalar), o problema passa a pertencer a classe de problemas NP-Difícil. Com o objetivo principal de analisar a complexidade computacional dos problemas de computar os valores dos indicadores estatísticos descritivos com entradas intervalares, e realizar uma classificação quanto a classe de complexidade, a presente tese apresenta: i) definições intervalares de medidas de tendência central, medidas de dispersão e separatrizes; ii) investigação da complexidade de problemas das medidas de tendência central média, mediana e moda, das medidas de dispersão amplitude, variância, desvio padrão, coeficiente de variação, covariância, coeficiente de correlação e das separatrizes e iii) representação intervalar dos valores reais, de tal modo que garante a qualidade de aproximação nos intervalos solução calculado através da extensão intervalar Primeiramente, apresentamos uma abordagem intervalar para os indicadores estatísticos e propomos algoritmos para a solução dos problemas de computar os intervalos de medidas de tendência central intervalar, dispersão intervalar e separatrizes intervalares. Tais algoritmos utilizam a aritmética intervalar definida por Moore, a extensão intervalar e foram projetados para serem executados em ambientes intervalares como IntLab e Maple Intervalar. Por meio da análise da complexidade computacional verificamos que os problemas de medidas de tendência central, dispersão e separatrizes, com entradas intervalares, pertencem à classe de problemas P. Este trabalho apresenta, portanto, algoritmos de tempo polinomial que calculam os intervalos dos indicadores estatísticos com entradas intervalares, e que retornam como solução intervalos com qualidade de aproximação. Os resultados obtidos no desenvolvimento do trabalho tornaram viável a computação da Estatística Descritiva Intervalar.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Com o objetivo de desenvolver uma fundamentação teórica para o estudo formal de problemas de otimização NP-difíceis, focalizando sobre as propriedades estruturais desses problemas relacionadas à questão da aproximabilidade, este trabalho apresenta uma abordagem semântica para tratar algumas questões originalmente estudadas dentro da Teoria da Complexidade Computacional, especificamente no contexto da Complexidade Estrutural. Procede-se a uma investigação de interesse essencialmente teórico, buscando obter uma formalização para a teoria dos algoritmos aproximativos em dois sentidos. Por um lado, considera-se um algoritmo aproximativo para um problema de otimização genérico como o principal objeto de estudo, estruturando-se matematicamente o conjunto de algoritmos aproximativos para tal problema como uma ordem parcial, no enfoque da Teoria dos Domínios de Scott. Por outro lado, focaliza-se sobre as reduções entre problemas de otimização, consideradas como morfismos numa abordagem dentro da Teoria das Categorias, onde problemas de otimização e problemas aproximáveis são os objetos das novas categorias introduzidas. Dentro de cada abordagem, procura-se identificar aqueles elementos universais, tais como elementos finitos, objetos totais, problemas completos para uma classe, apresentando ainda um sistema que modela a hierarquia de aproximação para um problema de otimização NP-difícil, com base na teoria categorial da forma. Cada uma destas estruturas matemáticas fornecem fundamentação teórica em aspectos que se complementam. A primeira providencia uma estruturação interna para os objetos, caracterizando as classes de problemas em relação às propriedades de aproximabilidade de seus membros, no sentido da Teoria dos Domínios, enquanto que a segunda caracteriza-se por relacionar os objetos entre si, em termos de reduções preservando aproximação entre problemas, num ponto de vista externo, essencialmente categorial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente tese apresenta a concepção de uma rede neural oscilatória e sua realização em arquitetura maciçamente paralela, a qual é adequada à implementação de chips de visão digitais para segmentação de imagens. A rede proposta, em sua versão final, foi denominada ONNIS-GI (Oscillatory Neural Network for Image Segmentation with Global Inhibition) e foi inspirada em uma rede denominada LEGION (Locally Excitatory Globally Inhibitory Oscillator Network), também de concepção recente. Inicialmente, é apresentada uma introdução aos procedimentos de segmentação de imagens, cujo objetivo é o de situar e enfatizar a importância do tema abordado dentro de um contexto abrangente, o qual inclui aplicações de visão artificial em geral. Outro aspecto abordado diz respeito à utilização de redes neurais artificiais em segmentação de imagens, enfatizando as denominadas redes neurais oscilatórias, as quais têm apresentado resultados estimulantes nesta área. A implementação de chips de visão, integrando sensores de imagens e redes maciçamente paralelas de processadores, é também abordada no texto, ressaltando o objetivo prático da nova rede neural proposta. No estudo da rede LEGION, são apresentados resultados de aplicações originais desenvolvidas em segmentação de imagens, nos quais é verificada sua propriedade de separação temporal dos segmentos. A versão contínua da rede, um arranjo paralelo de neurônios baseados em equações diferenciais, apresenta elevada complexidade computacional para implementação em hardware digital e muitos parâmetros, com procedimento de ajuste pouco prático. Por outro lado, sua arquitetura maciçamente paralela apresenta-se particularmente adequada à implementação de chips de visão analógicos com capacidade de segmentação de imagens. Com base nos bons resultados obtidos nas aplicações desenvolvidas, é proposta uma nova rede neural, em duas versões, ONNIS e ONNIS-GI, as quais suplantam a rede LEGION em diversos aspectos relativos à implementação prática. A estrutura dos elementos de processamento das duas versões da rede, sua implementação em arquitetura maciçamente paralela e resultados de simulações e implementações em FPGA são apresentados, demonstrando a viabilidade da proposta. Como resultado final, conclui-se que a rede ONNIS-GI apresenta maior apelo de ordem prática, sendo uma abordagem inovadora e promissora na solução de problemas de segmentação de imagens, possuindo capacidade para separar temporalmente os segmentos encontrados e facilitando a posterior identificação dos mesmos. Sob o ponto de vista prático, a nova rede pode ser utilizada para implementar chips de visão digitais com arquitetura maciçamente paralela, explorando a velocidade de tais topologias e apresentando também flexibilidade para implementação de procedimentos de segmentação de imagens mais sofisticados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O padrão H.264 foi desenvolvido pelo JVT, que foi formado a partir de uma união entre os especialistas do VCEG da ITU-T e do MPEG da ISO/IEC. O padrão H.264 atingiu seu objetivo de alcançar as mais elevadas taxas de processamento dentre todos os padrões existentes, mas à custa de um grande aumento na complexidade computacional. Este aumento de complexidade impede, pelo menos na tecnologia atual, a utilização de codecs H.264 implementados em software, quando se deseja a decodi cação de vídeos de alta de nição em tempo real. Essa dissertação propõe uma solução arquitetural de hardware, denominada MoCHA, para compensação de movimento do decodi cador de vídeo de alta de nição, segundo o padrão H.264/AVC. A MoCHA está dividida em três blocos principais, a predição dos vetores de movimento, o acesso à memória e o processamento de amostras. A utilização de uma cache para explorar a redundância dos dados nos acessos à mem ória, em conjunto com melhorias propostas, alcançou economia de acessos à memória superior a 60%, para os casos testados. Quando uma penalidade de um ciclo por troca de linha de memória é imposta, a economia de ciclos de acesso supera os 75%. No processamento de amostras, a arquitetura realiza o processamento dos dois blocos, que dão origem ao bloco bi-preditivo, de forma serial. Dessa forma, são economizados recursos de hardware, uma vez que a duplicação da estrutura de processamento não é requerida. A arquitetura foi validada a partir de simulações, utilizando entradas extraídas de seqüências codi cadas. Os dados extraídos, salvos em arquivos, serviam de entrada para a simulação. Os resultados da simulação foram salvos em arquivos e comparados com os resultados extraídos. O processador de amostras do compensador de movimento foi prototipado na placa XUP Virtex-II Pro. A placa possui um FPGA VP30 da família Virtex-II PRO da Xilinx. O processador PowerPC 405, presente no dispositivo, foi usado para implementar um test bench para validar a operação do processador de amostras mapeado para o FPGA. O compensador de movimento para o decodi cador de vídeo H.264 foi descrito em VHDL, num total de 30 arquivos e cerca de 13.500 linhas de código. A descrição foi sintetizada pelo sintetizador Syplify Pro da Symplicity para o dispositivo XC2VP30-7 da Xilinx, consumindo 8.465 slices, 5.671 registradores, 10.835 LUTs, 21 blocos de memó- ria interna e 12 multiplicadores. A latência mínima para processar um macrobloco é de 233 ciclos, enquanto a máxima é de 590, sem considerar misses na cache. A freqüência máxima de operação foi de 100,5 MHz. A arquitetura projetada é capaz de processar, no pior caso, 36,7 quadros HDTV de 1080 por 1920, inteiramente bi-preditivos, por segundo. Para quadros do tipo P, que não utilizam a bi-predição, a capacidade de processamento sobe para 64,3 quadros por segundo. A arquitetura apresentada para o processamento de quadros bi-preditivos e a hierarquia de memória são, até o momento, inéditas na literatura. Os trabalhos relativos a decodi cadores completos não apresentam a solução para esse processamento. Os resultados apresentados tornam a MoCHA uma solução arquitetural capaz de fazer parte de um decodi cador para vídeos de alta definição.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nas últimas décadas, a poluição sonora tornou-se um grande problema para a sociedade. É por esta razão que a indústria tem aumentado seus esforços para reduzir a emissão de ruído. Para fazer isso, é importante localizar quais partes das fontes sonoras são as que emitem maior energia acústica. Conhecer os pontos de emissão é necessário para ter o controle das mesmas e assim poder reduzir o impacto acústico-ambiental. Técnicas como \"beamforming\" e \"Near-Field Acoustic Holography\" (NAH) permitem a obtenção de imagens acústicas. Essas imagens são obtidas usando um arranjo de microfones localizado a uma distância relativa de uma fonte emissora de ruído. Uma vez adquiridos os dados experimentais pode-se obter a localização e magnitude dos principais pontos de emissão de ruído. Do mesmo modo, ajudam a localizar fontes aeroacústicas e vibro acústicas porque são ferramentas de propósito geral. Usualmente, estes tipos de fontes trabalham em diferentes faixas de frequência de emissão. Recentemente, foi desenvolvida a transformada de Kronecker para arranjos de microfones, a qual fornece uma redução significativa do custo computacional quando aplicada a diversos métodos de reconstrução de imagens, desde que os microfones estejam distribuídos em um arranjo separável. Este trabalho de mestrado propõe realizar medições com sinais reais, usando diversos algoritmos desenvolvidos anteriormente em uma tese de doutorado, quanto à qualidade do resultado obtido e à complexidade computacional, e o desenvolvimento de alternativas para tratamento de dados quando alguns microfones do arranjo apresentarem defeito. Para reduzir o impacto de falhas em microfones e manter a condição de que o arranjo seja separável, foi desenvolvida uma alternativa para utilizar os algoritmos rápidos, eliminando-se apenas os microfones com defeito, de maneira que os resultados finais serão obtidos levando-se em conta todos os microfones do arranjo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O filtro de Kalman estendido tem sido a mais popular ferramenta de filtragem não linear das últimas quatro décadas. É de fácil implementação e apresenta baixo custo computacional. Nos casos nos quais as não linearidades do sistema dinâmico são significativas, porém, o filtro de Kalman estendido pode apresentar resultados insatisfatórios. Nessas situações, o filtro de Kalman unscented substitui com vantagens o filtro de Kalman estendido, pois pode apresentar melhores estimativas de estado, embora ambos os filtros exibam complexidade computacional de mesma ordem. A qualidade das estimativas de estado do filtro unscented está intimamente ligada à sintonia dos parâmetros que controlam a transformada unscented. A versão escalada dessa transformada exibe três parâmetros escalares que determinam o posicionamento dos pontos sigma e, consequentemente, afetam diretamente a qualidade das estimativas produzidas pelo filtro. Apesar da importância do filtro de Kalman unscented, a sintonia ótima desses parâmetros é um problema para o qual ainda não há solução definitiva. Não há nem mesmo recomendações heurísticas que garantam o bom funcionamento do filtro unscented na maior parte dos problemas tratáveis por meio de filtros Gaussianos. Essa carência e a importância desse filtro para a área de filtragem não linear fazem da busca por mecanismos de sintonia automática do filtro unscented área de pesquisa ativa. Assim, este trabalho propõe técnicas para sintonia automática dos parâmetros da transformada unscented escalada. Além da sintonia desses parâmetros, também é abordado o problema de sintonizar as matrizes de covariância dos ruídos de processo e de medida demandadas pelo modelo do sistema dinâmico usado pelo filtro unscented. As técnicas propostas cobrem então a sintonia automática de todos os parâmetros do filtro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O NAVSTAR/GPS (NAVigation System with Timing And Ranging/Global Po- sitioning System), mais conhecido por GPS, _e um sistema de navegacão baseado em sat_elites desenvolvido pelo departamento de defesa norte-americano em meados de 1970. Criado inicialmente para fins militares, o GPS foi adaptado para o uso civil. Para fazer a localização, o receptor precisa fazer a aquisição de sinais dos satélites visíveis. Essa etapa é de extrema importância, pois é responsável pela detecção dos satélites visíveis, calculando suas respectivas frequências e fases iniciais. Esse processo pode demandar bastante tempo de processamento e precisa ser implementado de forma eficiente. Várias técnicas são utilizadas atualmente, mas a maioria delas colocam em conflito questões de projeto tais como, complexidade computacional, tempo de aquisição e recursos computacionais. Objetivando equilibrar essas questões, foi desenvolvido um método que reduz a complexidade do processo de aquisição utilizando algumas estratégias, a saber, redução do efeito doppler, amostras e tamanho do sinal utilizados, além do paralelismo. Essa estratégia é dividida em dois passos, um grosseiro em todo o espaço de busca e um fino apenas na região identificada previamente pela primeira etapa. Devido a busca grosseira, o limiar do algoritmo convencional não era mais aceitável. Nesse sentido, um novo limiar foi estabelecido baseado na variância dos picos de correlação. Inicialmente, é feita uma busca com pouca precisão comparando a variância dos cinco maiores picos de correlação encontrados. Caso a variância ultrapasse um certo limiar, a região de maior pico torna-se candidata à detecção. Por fim, essa região passa por um refinamento para se ter a certeza de detecção. Os resultados mostram que houve uma redução significativa na complexidade e no tempo de execução, sem que tenha sido necessário utilizar algoritmos muito complexos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.