992 resultados para Complex reflection coefficient
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice-versa. The method is based on measuring the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. Viscosity measurements were made in the range from 1 to 3.5MHz at 22.5°C for automotive oil (SAE40) and at 15°C for olive oil. Moreover, measurements of the olive oil were also conducted in the range from 15 to 30°C at 3.5MHz. The experimental results agree with those provided by a rotational viscometer. © 2006 IEEE.
Resumo:
The determination of the reflection coefficient of shear waves reflected from a solid-liquid interface is an important method in order to study the viscoelastic properties of liquids at high frequency. The reflection coefficient is a complex number. While the magnitude measurement is relatively easy and precise, the phase measurement is very difficult due to its strong temperature dependence. For that reason, most authors choose a simplified method in order to obtain the viscoelastic properties of liquids from the measured coefficient. In this simplified method, inconsistent viscosity results are obtained because pure viscous behavior is assumed and the phase is not measured. This work deals with an effort to improve the experimental technique required to measure both the magnitude and phase of the reflection coefficient and it intends to report realistic values for oils in a wide range of viscosity (0.092 - 6.7 Pa.s). Moreover, a device calibration process is investigated in order to monitor the dynamic viscosity of the liquid.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
The precision of quasioptical null-balanced bridge instruments for transmission and reflection coefficient measurements at millimeter and submillimeter wavelengths is analyzed. A Jones matrix analysis is used to describe the amount of power reaching the detector as a function of grid angle orientation, sample transmittance/reflectance and phase delay. An analysis is performed of the errors involved in determining the complex transmission and reflection coefficient after taking into account the quantization error in the grid angle and micrometer readings, the transmission or reflection coefficient of the sample, the noise equivalent power of the detector, the source power and the post-detection bandwidth. For a system fitted with a rotating grid with resolution of 0.017 rad and a micrometer quantization error of 1 μm, a 1 mW source, and a detector with a noise equivalent power 5×10−9 W Hz−1/2, the maximum errors at an amplitude transmission or reflection coefficient of 0.5 are below ±0.025.
Resumo:
In 'Involutory reflection groups and their models' (F. Caselli, 2010), a uniform Gelfand model is constructed for all complex reflection groups G(r,p,n) satisfying GCD(p,n)=1,2 and for all their quotients modulo a scalar subgroup. The present work provides a refinement for this model. The final decomposition obtained is compatible with the Robinson-Schensted generalized correspondence.
Resumo:
This work presents a cell to measure dynamic viscosity of liquids using ultrasonic wave mode conversion from longitudinal to shear wave. The strategy used to obtain the viscosity is based on the measurement of the complex reflection coefficient of shear waves at a solid-liquid interface. Viscosity measurements of automotive oils (SAE90 and SAE140) were obtained in the frequency range from 1 to 10 MHz. These results are compared with the Maxwell model with two relaxation times, showing the dependency of viscosity with frequency. Several parameters affecting viscosity measurements, including the solid material properties, liquid viscosity, and operating frequency are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The determination of the complex reflection coefficient of ultrasonic shear-waves at the solid-liquid interface is a technique employed for the measurement of the viscoelastic properties of liquids. An interesting property of the measurement technique is the very small penetration depth of the shear-waves into the liquid sample, which permits measurements with liquid films of some micrometers thick. This property, along with the adhesion of oily substances to surfaces, can be used for the detection of oily contaminants in water. In this work, the employment of the ultrasonic shear-wave reflection technique to the detection of oily contaminants in water is proposed and the theoretical and experimental concepts involved are discussed. Preliminary experimental results show the measurement technique can detect SAE 40 automotive oil in water in volume proportions less than 0.5%.
Resumo:
A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.
Resumo:
This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (> 250 eV) of the IBEX-Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well-represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust.