925 resultados para Complex Systems Science
Resumo:
The article argues that economics will have to become a complex systems science before economists can comfortably incorporate institutionalist and evolutionary economics into mainstream theory. The article compares the complex adaptive system of John Foster with that of standard economic theory and illustrates the difference through an examination of familiar production function. The place of neoclassical, Keynesian economics in complex systems is considered. The article concludes that convincing, multiple models have been made possible by the increase in widely available computing power available.
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
It has been shown that in reality at least two general scenarios of data structuring are possible: (a) a self-similar (SS) scenario when the measured data form an SS structure and (b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random sequences that are almost periodic with respect to each other. In the second case it becomes possible to describe their behavior and express a part of their randomness quantitatively in terms of the deterministic amplitude–frequency response belonging to the generalized Prony spectrum. This possibility allows us to re-examine the conventional concept of measurements and opens a new way for the description of a wide set of different data. In particular, it concerns different complex systems when the ‘best-fit’ model pretending to be the description of the data measured is absent but the barest necessity of description of these data in terms of the reduced number of quantitative parameters exists. The possibilities of the proposed approach and detection algorithm of the QP processes were demonstrated on actual data: spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested methodology allows revising the accepted classification of different incommensurable and self-affine spatial structures and finding accurate interpretation of the generalized Prony spectroscopy that includes the Fourier spectroscopy as a partial case.
Resumo:
Smart grid research has tended to be compartmentalised, with notable contributions from economics, electrical engineering and science and technology studies. However, there is an acknowledged and growing need for an integrated systems approach to the evaluation of smart grid initiatives. The capacity to simulate and explore smart grid possibilities on various scales is key to such an integrated approach but existing models – even if multidisciplinary – tend to have a limited focus. This paper describes an innovative and flexible framework that has been developed to facilitate the simulation of various smart grid scenarios and the interconnected social, technical and economic networks from a complex systems perspective. The architecture is described and related to realised examples of its use, both to model the electricity system as it is today and to model futures that have been envisioned in the literature. Potential future applications of the framework are explored, along with its utility as an analytic and decision support tool for smart grid stakeholders.
Resumo:
Power-law distributions, i.e. Levy flights have been observed in various economical, biological, and physical systems in high-frequency regime. These distributions can be successfully explained via gradually truncated Levy flight (GTLF). In general, these systems converge to a Gaussian distribution in the low-frequency regime. In the present work, we develop a model for the physical basis for the cut-off length in GTLF and its variation with respect to the time interval between successive observations. We observe that GTLF automatically approach a Gaussian distribution in the low-frequency regime. We applied the present method to analyze time series in some physical and financial systems. The agreement between the experimental results and theoretical curves is excellent. The present method can be applied to analyze time series in a variety of fields, which in turn provide a basis for the development of further microscopic models for the system. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A major challenge in the engineering of complex and critical systems is the management of change, both in the system and in its operational environment. Due to the growing of complexity in systems, new approaches on autonomy must be able to detect critical changes and avoid their progress towards undesirable states. We are searching for methods to build systems that can tune the adaptability protocols. New mechanisms that use system-wellness requirements to reduce the influence of the outer domain and transfer the control of uncertainly to the inner one. Under the view of cognitive systems, biological emotions suggests a strategy to configure value-based systems to use semantic self-representations of the state. A method inspired by emotion theories to causally connect to the inner domain of the system and its objectives of wellness, focusing on dynamically adapting the system to avoid the progress of critical states. This method shall endow the system with a transversal mechanism to monitor its inner processes, detecting critical states and managing its adaptivity in order to maintain the wellness goals. The paper describes the current vision produced by this work-in-progress.
Resumo:
A major challenge in the engineering of complex and critical systems is the management of change, both in the system and in its operational environment. Due to the growing of complexity in systems, new approaches on autonomy must be able to detect critical changes and avoid their progress towards undesirable states. We are searching for methods to build systems that can tune the adaptability protocols. New mechanisms that use system-wellness requirements to reduce the influence of the outer domain and transfer the control of uncertainly to the inner one. Under the view of cognitive systems, biological emotions suggests a strategy to configure value-based systems to use semantic self-representations of the state. A method inspired by emotion theories to causally connect to the inner domain of the system and its objectives of wellness, focusing on dynamically adapting the system to avoid the progress of critical states. This method shall endow the system with a transversal mechanism to monitor its inner processes, detecting critical states and managing its adaptivity in order to maintain the wellness goals. The paper describes the current vision produced by this work-in-progress.
Resumo:
Semiotic components in the relations of complex systems depend on the Subject. There are two main semiotic components: Neutrosophic and Modal. Modal components are alethical and deontical. In this paper the authors applied the theory of Neutrosophy and Modal Logic to Deontical Impure Systems.
Resumo:
The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.
Resumo:
In an open system, each disequilibrium causes a force. Each force causes a flow process, these being represented by a flow variable formally written as an equation called flow equation, and if each flow tends to equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a flow orbital considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow equation and a function of orbital dissipation.
Resumo:
In this paper, the authors extend and generalize the methodology based on the dynamics of systems with the use of differential equations as equations of state, allowing that first order transformed functions not only apply to the primitive or original variables, but also doing so to more complex expressions derived from them, and extending the rules that determine the generation of transformed superior to zero order (variable or primitive). Also, it is demonstrated that for all models of complex reality, there exists a complex model from the syntactic and semantic point of view. The theory is exemplified with a concrete model: MARIOLA model.
Resumo:
A theory of value sits at the core of every school of economic thought and directs the allocation of resources to competing uses. Ecological resources complicate the modem neoclassical approach to determining value due to their complex nature, considerable non-market values and the difficulty in assigning property rights. Application of the market model through economic valuation only provides analytical solutions based on virtual markets, and neither the demand nor supply-side techniques of valuation can adequately consider the complex set of biophysical and ecological relations that lead to the provision of ecosystem goods and services. This paper sets out a conceptual framework for a complex systems approach to the value of ecological resources. This approach is based on there being both an intrinsic quality of ecological resources and a subjective evaluation by the consumer. Both elements are necessary for economic value. This conceptual framework points the way towards a theory of value that incorporates both elements, so has implications for principles by which ecological resources can be allocated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.
Resumo:
In this paper we propose a new framework for evaluating designs based on work domain analysis, the first phase of cognitive work analysis. We develop a rationale for a new approach to evaluation by describing the unique characteristics of complex systems and by showing that systems engineering techniques only partially accommodate these characteristics. We then present work domain analysis as a complementary framework for evaluation. We explain this technique by example by showing how the Australian Defence Force used work domain analysis to evaluate design proposals for a new system called Airborne Early Warning and Control. This case study also demonstrates that work domain analysis is a useful and feasible approach that complements standard techniques for evaluation and that promotes a central role for human factors professionals early in the system design and development process. Actual or potential applications of this research include the evaluation of designs for complex systems.