983 resultados para Complex Programmable Logic Device (CPLD)
Resumo:
The philosophy of minimalism in robotics promotes gaining an understanding of sensing and computational requirements for solving a task. This minimalist approach lies in contrast to the common practice of first taking an existing sensory motor system, and only afterwards determining how to apply the robotic system to the task. While it may seem convenient to simply apply existing hardware systems to the task at hand, this design philosophy often proves to be wasteful in terms of energy consumption and cost, along with unnecessary complexity and decreased reliability. While impressive in terms of their versatility, complex robots such as the PR2 (which cost hundreds of thousands of dollars) are impractical for many common applications. Instead, if a specific task is required, sensing and computational requirements can be determined specific to that task, and a clever hardware implementation can be built to accomplish the task. Since this minimalist hardware would be designed around accomplishing the specified task, significant reductions in hardware complexity can be obtained. This can lead to huge advantages in battery life, cost, and reliability. Even if cost is of no concern, battery life is often a limiting factor in many applications. Thus, a minimalist hardware system is critical in achieving the system requirements. In this thesis, we will discuss an implementation of a counting, tracking, and actuation system as it relates to ergodic bodies to illustrate a minimalist design methodology.
Resumo:
The purpose of this study was to evaluate the determinism of the AS-lnterface network and the 3 main families of control systems, which may use it, namely PLC, PC and RTOS. During the course of this study the PROFIBUS and Ethernet field level networks were also considered in order to ensure that they would not introduce unacceptable latencies into the overall control system. This research demonstrated that an incorrectly configured Ethernet network introduces unacceptable variable duration latencies into the control system, thus care must be exercised if the determinism of a control system is not to be compromised. This study introduces a new concept of using statistics and process capability metrics in the form of CPk values, to specify how suitable a control system is for a given control task. The PLC systems, which were tested, demonstrated extremely deterministic responses, but when a large number of iterations were introduced in the user program, the mean control system latency was much too great for an AS-I network. Thus the PLC was found to be unsuitable for an AS-I network if a large, complex user program Is required. The PC systems, which were tested were non-deterministic and had latencies of variable duration. These latencies became extremely exaggerated when a graphing ActiveX was included in the control application. These PC systems also exhibited a non-normal frequency distribution of control system latencies, and as such are unsuitable for implementation with an AS-I network. The RTOS system, which was tested, overcame the problems identified with the PLC systems and produced an extremely deterministic response, even when a large number of iterations were introduced in the user program. The RTOS system, which was tested, is capable of providing a suitable deterministic control system response, even when an extremely large, complex user program is required.
Resumo:
This bachelor’s thesis is a part of the research project realized in the summer 2011 in Lappeenranta University of Technology. The goal of the project was to develop an automation concept for controlling the electrically excited synchronous motor. Thesis concentrates on the implementation of the automation concept into the ABB’s AC500 programmable logic enviroment. The automation program was developed as a state machine with the ABB’s PS501 Control Builder software. For controlling the automation program is developed a fieldbus control and with CodeSys Visualization Tool a local control with control panel. The fieldbus control is done to correspond the ABB drives communication profile and the local control is implemented with a function block which feeds right control words into the statemachine. A field current control of the synchronous motor is realized as a method presented in doctoral thesis of Olli Pyrhönen (Pyrhönen 1998). The Method combines stator flux and torque based openloop control and power factor based feedback control.
Resumo:
The aim of this study was to develop a laboratory method for time response evaluation on electronically controlled spray equipment using Programmable Logic Controllers (PLCs). For that purpose, a PLC controlled digital drive inverter was set up to drive an asynchronous electric motor linked to a centrifugal pump on a experimental sprayer equipped with electronic flow control. The PLC was operated via RS232 serial communication from a PC computer. A user program was written to control de motor by adjusting the following system variables, all related to the motor speed: time stopped; ramp up and ramp down times, time running at a given constant speed and ramp down time to stop the motor. This set up was used in conjunction with a data acquisition system to perform laboratory tests with an electronically controlled sprayer. Time response for pressure stabilization was measured while changing the pump speed by +/-20%. The results showed that for a 0.2 s ramp time increasing the motor speed, as an example, an AgLogix Flow Control system (Midwest Technologies Inc.) took 22 s in average to readjust the pressure. When decreasing the motor speed, this time response was down to 8 s. General results also showed that this kind of methodology could make easier the definition of standards for tests on electronically controlled application equipment.
Resumo:
The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).
Resumo:
Photonics logic devices are currently finding applications in most of the fields where optical signals are employed. These areas range from optical communications to optical computing, covering as well as other applications in photonics sensing and metrology. Most of the proposed configurations with photonics logic devices are based on semiconductor laser structures with “on/off” behaviors, operating in an optical amplifier configuration. They are able to offer non-linear gain or bistable operation, being these properties the basis for their applications in these fields. Moreover, their large number of potential affecting parameters onto their behavior offers the possibility to choose the best solution for each case.
Resumo:
This paper reports a model of the mammalian retina as well as an interpretation of some functions of the visual cortex. Its main objective is to simulate some of the behaviors observed at the different retina cells depending on the characteristics of the light impinging onto the photoreceptors. This simulation is carried out with a simple structure employed previously as basic building block of some optical computer architectures. Its possibility to perform any type of Boolean function allows a wide range of behaviors.
Resumo:
A possible approach to the synchronization of chaotic circuits is reported. It is based on an Optically Programmable Logic Cell and the signals are fully digital. A method to study the characteristics of the obtained chaos is reported as well as a new technique to compare the obtained chaos from an emitter and a receiver. This technique allows the synchronization of chaotic signals. The signals received at the receiver, composed by the addition of information and chaotic signals, are compared with the chaos generated there and a pure information signal can be detected. Its application to cryptography in Optical Communications comes directly from these properties. The model here presented is based on a computer simulation.
Resumo:
We proposed an optical communications system, based on a digital chaotic signal where the synchronization of chaos was the main objective, in some previous papers. In this paper we will extend this work. A way to add the digital data signal to be transmitted onto the chaotic signal and its correct reception, is the main objective. We report some methods to study the main characteristics of the resulting signal. The main problem with any real system is the presence of some retard between the times than the signal is generated at the emitter at the time when this signal is received. Any system using chaotic signals as a method to encrypt need to have the same characteristics in emitter and receiver. It is because that, this control of time is needed. A method to control, in real time the chaotic signals, is reported.
Resumo:
A major research area is the representation of knowledge for a given application in a compact manner such that desired information relating to this knowledge is easily recoverable. A complicated procedure may be required to recover the information from the stored representation and convert it back to usable form. Coder/decoder are the devices dedicated to that task. In this paper the capabilities that an Optical Programmable Logic Cell offers as a basic building block for coding and decoding are analyzed. We have previously published an Optically Programmable Logic Cells (OPLC), for applications as a chaotic generator or as basic element for optical computing. In optical computing previous studies these cells have been analyzed as full-adder units, being this element a basic component for the arithmetic logic structure in computing. Another application of this unit is reported in this paper. Coder and decoder are basic elements in computers, for example, in connections between processors and memory addressing. Moreover, another main application is the generation of signals for machine controlling from a certain instruction. In this paper we describe the way to obtain a coder/decoder with the OPLC and which type of applications may be the best suitable for this type of cell.
Resumo:
We present simulation results on how power output-input characteristic Instability in Distributed FeedBack -DFB semiconductor laser diode SLA can be employed to implemented Boolean logic device. Two configurations of DFB Laser diode under external optical injection, either in the transmission or in the reflective mode of operation, is used to implement different Optical Logic Cells (OLCs), called the Q- and the P-Device OLCs. The external optical injection correspond to two inputs data plus a cw control signal that allows to choose the Boolean logic function to be implement. DFB laser diode parameters are choosing to obtain an output-input characteristic with the values desired. The desired values are mainly the on-off contrast and switching power, conforming shape of hysteretic cycle. Two DFB lasers in cascade, one working in transmission operation and the other one in reflective operation, allows designing an inputoutput characteristic based on the same respond of a self-electrooptic effect device is obtained. Input power for a bit'T' is 35 uW(70uW) and a bit "0" is zero for all the Boolean function to be execute. Device control signal range to choose the logic function is 0-140 uW (280 uW). Q-device (P-device)
Resumo:
This work presents the development of an IEEE 1451.2 protocol controller based on a low-cost FPGA that is directly connected to the parallel port of a conventional personal computer. In this manner it is possible to implement a Network Capable Application Processor (NCAP) based on a personal computer, without parallel port modifications. This approach allows supporting the ten signal lines of the 10-wire IEEE 1451.2 Transducer Independent Interface (TII), that connects the network processor to the Smart Transducer Interface Module (STIM) also defined in the IEEE 1451.2 standard. The protocol controller is connected to the STIM through the TII's physical interface, enabling the portability of the application at the transducer and network processor level. The protocol controller architecture was fully developed in VHDL language and we have projected a special prototype configured in a general-purpose programmable logic device. We have implemented two versions of the protocol controller, which is based on IEEE 1451 standard, and we have obtained results using simulation and experimental tests. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS