912 resultados para Competing risks, Estimation of predator mortality, Over dispersion, Stochastic modeling
Resumo:
Background: Breast cancer mortality has experienced important changes over the last century. Breast cancer occurs in the presence of other competing risks which can influence breast cancer incidence and mortality trends. The aim of the present work is: 1) to assess the impact of breast cancer deaths among mortality from all causes in Catalonia (Spain), by age and birth cohort and 2) to estimate the risk of death from other causes than breast cancer, one of the inputs needed to model breast cancer mortality reduction due to screening or therapeutic interventions. Methods: The multi-decrement life table methodology was used. First, all-cause mortality probabilities were obtained by age and cohort. Then mortality probability for breast cancer was subtracted from the all-cause mortality probabilities to obtain cohort life tables for causes other than breast cancer. These life tables, on one hand, provide an estimate of the risk of dying from competing risks, and on the other hand, permit to assess the impact of breast cancer deaths on all-cause mortality using the ratio of the probability of death for causes other than breast cancer by the all-cause probability of death. Results: There was an increasing impact of breast cancer on mortality in the first part of the 20th century, with a peak for cohorts born in 1945–54 in the 40–49 age groups (for which approximately 24% of mortality was due to breast cancer). Even though for cohorts born after 1955 there was only information for women under 50, it is also important to note that the impact of breast cancer on all-cause mortality decreased for those cohorts. Conclusion: We have quantified the effect of removing breast cancer mortality in different age groups and birth cohorts. Our results are consistent with US findings. We also have obtained an estimate of the risk of dying from competing-causes mortality, which will be used in the assessment of the effect of mammography screening on breast cancer mortality in Catalonia.
Resumo:
2000 Mathematics Subject Classification: 97C40.
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms.
Resumo:
Lower partial moments plays an important role in the analysis of risks and in income/poverty studies. In the present paper, we further investigate its importance in stochastic modeling and prove some characterization theorems arising out of it. We also identify its relationships with other important applied models such as weighted and equilibrium models. Finally, some applications of lower partial moments in poverty studies are also examined
Resumo:
While over-dispersion in capture–recapture studies is well known to lead to poor estimation of population size, current diagnostic tools to detect the presence of heterogeneity have not been specifically developed for capture–recapture studies. To address this, a simple and efficient method of testing for over-dispersion in zero-truncated count data is developed and evaluated. The proposed method generalizes an over-dispersion test previously suggested for un-truncated count data and may also be used for testing residual over-dispersion in zero-inflation data. Simulations suggest that the asymptotic distribution of the test statistic is standard normal and that this approximation is also reasonable for small sample sizes. The method is also shown to be more efficient than an existing test for over-dispersion adapted for the capture–recapture setting. Studies with zero-truncated and zero-inflated count data are used to illustrate the test procedures.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
So far, in the bivariate set up, the analysis of lifetime (failure time) data with multiple causes of failure is done by treating each cause of failure separately. with failures from other causes considered as independent censoring. This approach is unrealistic in many situations. For example, in the analysis of mortality data on married couples one would be interested to compare the hazards for the same cause of death as well as to check whether death due to one cause is more important for the partners’ risk of death from other causes. In reliability analysis. one often has systems with more than one component and many systems. subsystems and components have more than one cause of failure. Design of high-reliability systems generally requires that the individual system components have extremely high reliability even after long periods of time. Knowledge of the failure behaviour of a component can lead to savings in its cost of production and maintenance and. in some cases, to the preservation of human life. For the purpose of improving reliability. it is necessary to identify the cause of failure down to the component level. By treating each cause of failure separately with failures from other causes considered as independent censoring, the analysis of lifetime data would be incomplete. Motivated by this. we introduce a new approach for the analysis of bivariate competing risk data using the bivariate vector hazard rate of Johnson and Kotz (1975).
Resumo:
Survival after surgical treatment using competing-risk analysis has been previously examined in patients with prostate cancer (PCa). However, the combined effect of age and comorbidities has not been assessed in patients with high-risk PCa who might have heterogeneous rates of competing mortality despite the presence of aggressive disease.
Resumo:
A mixture model for long-term survivors has been adopted in various fields such as biostatistics and criminology where some individuals may never experience the type of failure under study. It is directly applicable in situations where the only information available from follow-up on individuals who will never experience this type of failure is in the form of censored observations. In this paper, we consider a modification to the model so that it still applies in the case where during the follow-up period it becomes known that an individual will never experience failure from the cause of interest. Unless a model allows for this additional information, a consistent survival analysis will not be obtained. A partial maximum likelihood (ML) approach is proposed that preserves the simplicity of the long-term survival mixture model and provides consistent estimators of the quantities of interest. Some simulation experiments are performed to assess the efficiency of the partial ML approach relative to the full ML approach for survival in the presence of competing risks.
Resumo:
Since 1895, when X-rays were discovered, ionizing radiation became part of our life. Its use in medicine has brought significant health benefits to the population globally. The benefit of any diagnostic procedure is to reduce the uncertainty about the patient's health. However, there are potential detrimental effects of radiation exposure. Therefore, radiation protection authorities have become strict regarding the control of radiation risks.¦There are various situations where the radiation risk needs to be evaluated. International authority bodies point to the increasing number of radiologic procedures and recommend population surveys. These surveys provide valuable data to public health authorities which helps them to prioritize and focus on patient groups in the population that are most highly exposed. On the other hand, physicians need to be aware of radiation risks from diagnostic procedures in order to justify and optimize the procedure and inform the patient.¦The aim of this work was to examine the different aspects of radiation protection and investigate a new method to estimate patient radiation risks.¦The first part of this work concerned radiation risk assessment from the regulatory authority point of view. To do so, a population dose survey was performed to evaluate the annual population exposure. This survey determined the contribution of different imaging modalities to the total collective dose as well as the annual effective dose per caput. It was revealed that although interventional procedures are not so frequent, they significantly contribute to the collective dose. Among the main results of this work, it was shown that interventional cardiological procedures are dose-intensive and therefore more attention should be paid to optimize the exposure.¦The second part of the project was related to the patient and physician oriented risk assessment. In this part, interventional cardiology procedures were studied by means of Monte Carlo simulations. The organ radiation doses as well as effective doses were estimated. Cancer incidence risks for different organs were calculated for different sex and age-at-exposure using the lifetime attributable risks provided by the Biological Effects of Ionizing Radiations Report VII. Advantages and disadvantages of the latter results were examined as an alternative method to estimate radiation risks. The results show that this method is the most accurate, currently available, to estimate radiation risks. The conclusions of this work may guide future studies in the field of radiation protection in medicine.¦-¦Depuis la découverte des rayons X en 1895, ce type de rayonnement a joué un rôle important dans de nombreux domaines. Son utilisation en médecine a bénéficié à la population mondiale puisque l'avantage d'un examen diagnostique est de réduire les incertitudes sur l'état de santé du patient. Cependant, leur utilisation peut conduire à l'apparition de cancers radio-induits. Par conséquent, les autorités sanitaires sont strictes quant au contrôle du risque radiologique.¦Le risque lié aux radiations doit être estimé dans différentes situations pratiques, dont l'utilisation médicale des rayons X. Les autorités internationales de radioprotection indiquent que le nombre d'examens et de procédures radiologiques augmente et elles recommandent des enquêtes visant à déterminer les doses de radiation délivrées à la population. Ces enquêtes assurent que les groupes de patients les plus à risque soient prioritaires. D'un autre côté, les médecins ont également besoin de connaître le risque lié aux radiations afin de justifier et optimiser les procédures et informer les patients.¦Le présent travail a pour objectif d'examiner les différents aspects de la radioprotection et de proposer une manière efficace pour estimer le risque radiologique au patient.¦Premièrement, le risque a été évalué du point de vue des autorités sanitaires. Une enquête nationale a été réalisée pour déterminer la contribution des différentes modalités radiologiques et des divers types d'examens à la dose efficace collective due à l'application médicale des rayons X. Bien que les procédures interventionnelles soient rares, elles contribuent de façon significative à la dose délivrée à la population. Parmi les principaux résultats de ce travail, il a été montré que les procédures de cardiologie interventionnelle délivrent des doses élevées et devraient donc être optimisées en priorité.¦La seconde approche concerne l'évaluation du risque du point de vue du patient et du médecin. Dans cette partie, des procédures interventionnelles cardiaques ont été étudiées au moyen de simulations Monte Carlo. La dose délivrée aux organes ainsi que la dose efficace ont été estimées. Les risques de développer des cancers dans plusieurs organes ont été calculés en fonction du sexe et de l'âge en utilisant la méthode établie dans Biological Effects of Ionizing Radiations Report VII. Les avantages et inconvénients de cette nouvelle technique ont été examinés et comparés à ceux de la dose efficace. Les résultats ont montré que cette méthode est la plus précise actuellement disponible pour estimer le risque lié aux radiations. Les conclusions de ce travail pourront guider de futures études dans le domaine de la radioprotection en médicine.
Resumo:
Applying the competing--risks model to multi--cause mortality,this paper provides a theoretical and empirical investigation of the positive complementarities that occur between disease--specific policy interventions. We argue that since an individual cannot die twice, competing risks imply that individuals will not waste resources on causes that are not the most immediate, but will make health investments so as to equalize cause--specific mortality. However, equal mortality risk from a variety of diseases does not imply that disease--specific public health interventions are a waste. Rather, a cause--specific intervention produces spillovers to other disease risks, so that the overall reduction in mortality will generally be larger than the direct effect measured on the targeted disease. The assumption that mortality from non--targeted diseases remains the same after a cause--specific intervention under--estimates the true effect of such programs, since the background mortality is also altered as a result of intervention. Analyzing data from one of the most important public health programs ever introduced, the Expanded Program on Immunization (EPI) of the United Nations, we find evidence for the existence of such complementarities, involving causes that are not biomedically, but behaviorally, linked.
Resumo:
there has been much research on analyzing various forms of competing risks data. Nevertheless, there are several occasions in survival studies, where the existing models and methodologies are inadequate for the analysis competing risks data. ldentifiabilty problem and various types of and censoring induce more complications in the analysis of competing risks data than in classical survival analysis. Parametric models are not adequate for the analysis of competing risks data since the assumptions about the underlying lifetime distributions may not hold well. Motivated by this, in the present study. we develop some new inference procedures, which are completely distribution free for the analysis of competing risks data.
Resumo:
It is aimed at reviewing the effect reflected in the quality and quantity of tobacco exportation with the appearance of Magdalena Fevers in the Ambalema zone (Colombia), between 1856 and 1870. The research explores the effect of labor over health and the effect of health over labor in this stage of the Colombian export development. By formulating an econometric model it is possible to establish whether the epidemic outbreaks of fevers were a relevant factor in explaining the behavior of tobacco exports from Ambalema to the outside. The analysis of the empirical data shows that it is possible that a fall on the exports in about 72,000 tobacco sacks per year caused by the fevers in the studied region, as well as a negative effect of the disease on the tobacco prices.