982 resultados para Cognitive Maps
Diffusion Dynamics of Energy Efficient Buildings. Actor's Cognitive Maps of the Construction Process
Resumo:
This chapter introduces a conceptual model to combine creativity techniques with fuzzy cognitive maps (FCMs) and aims to support knowledge management methods by improving expert knowledge acquisition and aggregation. The aim of the conceptual model is to represent acquired knowledge in a manner that is as computer-understandable as possible with the intention of developing automated reasoning in the future as part of intelligent information systems. The formal represented knowledge thus may provide businesses with intelligent information integration. To this end, we introduce and evaluate various creativity techniques with a list of attributes to define the most suitable to combine with FCMs. This proposed combination enables enhanced knowledge management through the acquisition and representation of expert knowledge with FCMs. Our evaluation indicates that the creativity technique known as mind mapping is the most suitable technique in our set. Finally, a scenario from stakeholder management demonstrates the combination of mind mapping with FCMs as an integrated system.
Resumo:
The new computing paradigm known as cognitive computing attempts to imitate the human capabilities of learning, problem solving, and considering things in context. To do so, an application (a cognitive system) must learn from its environment (e.g., by interacting with various interfaces). These interfaces can run the gamut from sensors to humans to databases. Accessing data through such interfaces allows the system to conduct cognitive tasks that can support humans in decision-making or problem-solving processes. Cognitive systems can be integrated into various domains (e.g., medicine or insurance). For example, a cognitive system in cities can collect data, can learn from various data sources and can then attempt to connect these sources to provide real time optimizations of subsystems within the city (e.g., the transportation system). In this study, we provide a methodology for integrating a cognitive system that allows data to be verbalized, making the causalities and hypotheses generated from the cognitive system more understandable to humans. We abstract a city subsystem—passenger flow for a taxi company—by applying fuzzy cognitive maps (FCMs). FCMs can be used as a mathematical tool for modeling complex systems built by directed graphs with concepts (e.g., policies, events, and/or domains) as nodes and causalities as edges. As a verbalization technique we introduce the restriction-centered theory of reasoning (RCT). RCT addresses the imprecision inherent in language by introducing restrictions. Using this underlying combinatorial design, our approach can handle large data sets from complex systems and make the output understandable to humans.
Resumo:
Synchronizing mind maps with fuzzy cognitive maps can help to handle complex problems with many involved stakeholders by taking advantage of human creativity. The proposed approach has the capacity to instantiate cognitive cities by including cognitive computing. A use case in the context of decision-finding (concerning a transportation system) is presented to illustrate the approach.
Resumo:
This paper presents a conceptual approach to enhance knowledge management by synchronizing mind maps and fuzzy cognitive maps. The use of mind maps allows taking advantage of human creativity, while the application of fuzzy cognitive maps enables to store information expressed in natural language. By applying cognitive computing, it makes possible to gather and extract relevant information out of a data pool. Therefore, this approach is supposed to give a framework that enhances knowledge management. To demonstrate the potential of this framework, a use case concerning the development of a smart city app is presented.
Resumo:
This paper introduces a mobile application (app) as the first part of an interactive framework. The framework enhances the inter-action between cities and their citizens, introducing the Fuzzy Analytical Hierarchy Process (FAHP) as a potential information acquisition method to improve existing citizen management en-deavors for cognitive cities. Citizen management is enhanced by advanced visualization using Fuzzy Cognitive Maps (FCM). The presented app takes fuzziness into account in the constant inter-action and continuous development of communication between cities or between certain of their entities (e.g., the tax authority) and their citizens. A transportation use case is implemented for didactical reasons.
Resumo:
This paper gives an insight into cognitive computing for smart cities, resulting in cognitive cities. Cognitive cities and cognitive computing research with the underlying concepts of knowledge graphs and fuzzy cognitive maps are presented and supported by existing tools (i.e., IBM Watson and Google Now) and intended tools (meta-app). The paper illustrates FCM as a suiting instrument to represent information/knowledge in a city environment driven by human-technology interaction, enforcing the concept of cognitive cities. A proposed paper prototype combines the findings of the paper and shows the next step in the implementation of the proposed meta-app.
Resumo:
This paper presents a software prototype of a personal digital assistant 2.0. Based on soft computing methods and cognitive computing this mobile application prototype improves calendar and mobility management in cognitive cities. Applying fuzzy cognitive maps and evolutionary algorithms, the prototype represents a next step towards the realization of cognitive cities (i.e., smart cities enhanced with cognition). A user scenario and a test version of the prototype are included for didactical reasons.
Resumo:
The importance of an organisation wide market oriented culture revolves around the performance implications of a focus on customers. However, in contemporary multiple stakeholder environments different notions of ‘the customer’ can exist adding complexity and introducing the possibility of different market oriented subcultures. An analysis of managers’ cognitive maps within a single case study highlight different beliefs and values associated with two alternative market oriented subcultures externally driven by a focus on two different customer groups. The lack of management consensus was further emphasised by two other alternative internally driven subcultures within the same firm. The implications are briefly discussed.
Resumo:
When facing a crisis, leaders' sensemaking can take a considerable amount of time due to the need to develop consensus in how to deal with it so that vision formation and sensegiving can take place. However, research into emerging cognitive consensus when leaders deal with a crisis over time is lacking. This is limiting a detailed understanding of how organizations respond to crises. The findings, based on a longitudinal analysis of cognitive maps within three management teams at a single organization, highlight considerable individual differences in cognitive content when starting to make sense of a crisis. Evidence for an emerging viable prescriptive mental model for the future was found, but not so much in the management as a whole. Instead, the findings highlight increasing cognitive consensus based on similarities in objectives and cause-effect beliefs within well-defined management teams over time.
Resumo:
Part 17: Risk Analysis
Resumo:
Male and female Wistar rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) to provide a rat model of schizophrenia based on transient glutathione deficit. In the watermaze, BSO-treated male rats perform very efficiently in conditions where a diversity of visual information is continuously available during orientation trajectories [1]. Our hypothesis is that the treatment impairs proactive strategies anticipating future sensory information, while supporting a tight visual adjustment on memorized snapshots, i.e. compensatory reactive strategies. To test this hypothesis, BSO rats' performance was assessed in two conditions using an 8-arm radial maze task: a semi-transparent maze with no available view on the environment from maze centre [2], and a modified 2-parallel maze known to induce a neglect of the parallel pair in normal rats [3-5]. Male rats, but not females, were affected by the BSO treatment. In the semi-transparent maze, BSO males expressed a higher error rate, especially in completing the maze after an interruption. In the 2-parallel maze shape, BSO males, unlike controls, expressed no neglect of the parallel arms. This second result was in accord with a reactive strategy using accurate memory images of the contextual environment instead of a representation based on integrating relative directions. These results are coherent with a treatment-induced deficit in proactive decision strategy based on multimodal cognitive maps, compensated by accurate reactive adaptations based on the memory of local configurations. Control females did not express an efficient proactive capacity in the semi-transparent maze, neither did they show the significant neglect of the parallel arms, which might have masked the BSO induced effect. Their reduced sensitivity to BSO treatment is discussed with regard to a sex biased basal cognitive style.