940 resultados para Coastal and Estuarine Modeling II
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, perfil de Engenharia Ecológica
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
A study of Muthalapozhy fishing harbour, located in south India, was conducted for simulating shoreline changes using LITPACK modelling tool. The analysis shows that the estimated advancement in shoreline is of the order of 45 m/year initially, which gradually reduces to 25 m/year. It was also found that the coastline advances more during the south-west monsoon (i.e. June to September) season. Simulation of breakwaters shows that the length of the breakwater should be increased by 200 m for south breakwater and 70 m for north breakwater to keep the channel operational without dredging till 2016. The results of the simulated shoreline will help the port managers for maintaining the channel round the year.
Resumo:
Supply of competent larvae to the benthic habitat is a major determinant of population dynamics in coastal and estuarine invertebrates with an indirect life cycle. Larval delivery may depend not only on physical transport mechanisms, but also on larval behavior and physiological progress to the competent stage. Yet, the combined analysis of such factors has seldom been attempted. We used time-series analyses to examine tide- and wind-driven mechanisms responsible for the supply of crab megalopae to an estuarine river under a major marine influence in SW Spain, and monitored the vertical distribution of upstream moving megalopae, their net flux and competent state. The species Panopeus africanus (estuarine), Brachynotus sexdentatus (euryhaline) and Nepinnotheres pinnotheres (coastal) comprised 80% of the whole sample, and responded in a similar way to tide and wind forcing. Tidal range was positively correlated to supply, with maxima 0 to 1 d after spring tides, suggesting selective tidal stream transport. Despite being extensively subjected to upwelling, downwind drift under the effect of westerlies, not Ekman transport, explained residual supply variation at our sampling area. Once in the estuary, net flux and competence state matched the expected trends. Net upstream flux increased from B. sexdentatus to P. africanus, favoring transport to a sheltered coastal habitat (N. pinnotheres), or to the upper estuary (P. africanus). Competence state was highest in N. pinnotheres, intermediate in B. sexdentatus and lowest in P. africanus, as expected if larvae respond to cues from adequate benthic habitat. P. africanus megalopae were found close to the bottom, not above, rendering slower upstream transport than anticipated.
Resumo:
Natural riversare consisting of various networks as junction andstreams. And sediment and erosion are occurred by specific stream condition. When flood season,large discharge flew in the river and river bed changed by high flow velocity. Especially junction area’s flow characteristics are very complex. The purpose of this study is to analyze the flow characteristics in channel junction, which are most influenced by large discharge like flooding and input water from tributary. We investigate the flow characteristics by using hydrodynamics and transport module in MIKE 3 FM. MIKE 3 FM model was helpful tool to analysis 3D hydrodynamics, erosion and sediment effect from channel bed. We analyze flow characteristics at channel junction. Also we consider hydraulic structures like a bridge pier which is influencing flow characteristics like a flow velocity, water level, erosion and scour depth in channel bed. In the model, we controlled discharge condition according to Froude Number and reflect various grain diameter size and flow ratio change in main stream and tributary. In the result, flow velocity, water level, erosion and sediment depth are analyzed. Additionally, we suggest a these result relationship with equations. This study will help the understand flow characteristics and influence of hydraulic structure in channel junction. Acknowledgments This research was supported by a grant (12-TI-C01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study demonstrates the compositional heterogeneity of a protein-like fluorescence emission signal (T-peak; excitation/emission maximum at 280/325 nm) of dissolved organic matter (DOM) samples collected from subtropical river and estuarine environments. Natural water samples were collected from the Florida Coastal Everglades ecosystem. The samples were ultrafiltered and excitation–emission fluorescence matrices were obtained. The T-peak intensity correlated positively with N concentration of the ultrafiltered DOM solution (UDON), although, the low correlation coefficient (r2=0.140, p<0.05) suggested the coexistence of proteins with other classes of compounds in the T-peak. As such, the T-peak was unbundled on size exclusion chromatography. The elution curves showed that the T-peak was composed of two compounds with distinct molecular weights (MW) with nominal MWs of about >5×104 (T1) and ∼7.6×103 (T2) and with varying relative abundance among samples. The T1-peak intensity correlated strongly with [UDON] (r2=0.516, p<0.001), while T2-peak did not, which suggested that the T-peak is composed of a mixture of compounds with different chemical structures and ecological roles, namely proteinaceous materials and presumably phenolic moieties in humic-like substances. Natural source of the latter may include polyphenols leached from senescent plant materials, which are important precursors of humic substances. This idea is supported by the fact that polyphenols, such as gallic acid, an important constituent of hydrolysable tannins, and condensed tannins extracted from red mangrove (Rhizophora mangle) leaves exhibited the fluorescence peak in the close vicinity of the T-peak (260/346 and 275/313 nm, respectively). Based on this study the application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input.
Biogeochemical Classification of South Florida’s Estuarine and Coastal Waters of Tropical Seagrasses
Resumo:
South Florida’s watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida’s estuarine and coastal waters is important to Everglades’ restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida’s coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria.
Resumo:
As a component of archaeological investigations on the central Queensland coast, a series of five marine shell specimens live-collected between A.D. 1904 and A.D. 1929 and 11 shell/ charcoal paired samples from archaeological contexts were radiocarbon dated to determine local DeltaR values. The object of the study was to assess the potential influence of localized variation in marine reservoir effect in accurately determining the age of marine and estuarine shell from archaeological deposits in the area. Results indicate that the routinely applied DeltaR value of -5 +/- 35 for northeast Australia is erroneously calculated. The determined values suggest a minor revision to Reimer and Reimer's (2000) recommended value for northeast Australia from DeltaR = +11 +/- 5 to + 12 +/- 7, and specifically for central Queensland to DeltaR = +10 +/- 7, for near-shore open marine environments. In contrast, data obtained from estuarine shell/charcoal pairs demonstrate a general lack of consistency, suggesting estuary-specific patterns of variation in terrestrial carbon input and exchange with the open ocean. Preliminary data indicate that in some estuaries, at some time periods, a DeltaR value of more than - 155 +/- 55 may be appropriate, In estuarine contexts in central Queensland, a localized estuary-specific correction factor is recommended to account for geographical and temporal variation in C-14 activity. (C) 2002 Wiley Periodicals.
Resumo:
Despite its wide range and abundance on certain habitats, the crab-eating raccoon Procyon cancrivorus (G. Cuvier, 1798) is considered one of the less known Neotropical carnivore species. In the present study we analyzed the diet of P. cancrivorus in a peat forest and in an estuarine island in southernmost Brazil. Fruits of the gerivá palm tree Syagrus romanzoffiana were the most consumed item in the peat forest, followed by insects and mollusks. Small mammals, followed by Bromelia antiacantha (Bromeliaceae) fruits and brachyuran crustaceans were the most frequent items in the estuarine island. Other items found in lower frequencies were Solanum sp., Psidium sp., Smilax sp. and Dyospiros sp. fruits, diplopods, scorpions, fishes, anuran amphibians, reptiles (black tegu lizard and snakes), birds and medium-sized mammals (white-eared opossum, armadillo and coypu). Levin’s index values (peat forest: 0.38; estuarine island: 0.45) indicate an approximation to a median position between a specialist and a well distributed diet. Pianka’s index (0.80) showed a considerable diet similarity between the two systems. Procyon cancrivorus presented a varied diet in the studied areas and may play an important role as seed disperser on coastal environments in southernmost Brazil.
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
The fertility of the coastal and estuarine waters is of great concern because of its influence on the productivity of these waters. Seasonal variations in the distribution of organic carbon, total nitrogen and total phosphorus in the sediments of Kuttanad Waters, a part of the tropical Cochin Estuary on the south west coast of India, are examined to identify the contribution of sediments to the fertility of the aquatic systems. The adjoining region has considerable agricultural activity. The fresh water zones had higher quantities of silt and clay whereas the estuarine zone was more sandy. Organic carbon, total phosphorus and total nitrogen were higher in the fresh water zones and lower in the estuarine zones. Total phosphorus and organic carbon showed the lowest values during monsoon periods. No significant trends were observed in the seasonal distributions of total nitrogen. Ratios of C/N, C/P and N/P, and the phosphorus and nitrogen content indicate significant modification in the character of the organic matter. Substantial amounts of the organic matter can contribute to reducing conditions and modify diagenetic processes
Resumo:
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Madagascar’s terrestrial and aquatic ecosystems have long supported a unique set of ecological communities, many of whom are endemic to the tropical island. Those same ecosystems have been a source of valuable natural resources to some of the poorest people in the world. Nevertheless, with pride, ingenuity and resourcefulness, the Malagasy people of the southwest coast, being of Vezo identity, subsist with low development fishing techniques aimed at an increasingly threatened host of aquatic seascapes. Mangroves, sea grass bed, and coral reefs of the region are under increased pressure from the general populace for both food provisions and support of economic opportunity. Besides purveyors and extractors, the coastal waters are also subject to a number of natural stressors, including cyclones and invasive, predator species of both flora and fauna. In addition, the aquatic ecosystems of the region are undergoing increased nutrient and sediment runoff due, in part, to Madagascar’s heavy reliance on land for agricultural purposes (Scales, 2011). Moreover, its coastal waters, like so many throughout the world, have been proven to be warming at an alarming rate over the past few decades. In recognizing the intimate interconnectedness of the both the social and ecological systems, conservation organizations have invoked a host of complimentary conservation and social development efforts with the dual aim of preserving or restoring the health of both the coastal ecosystems and the people of the region. This paper provides a way of thinking more holistically about the social-ecological system within a resiliency frame of understanding. Secondly, it applies a platform known as state-and-transition modeling to give form to the process. State-and-transition modeling is an iterative investigation into the physical makeup of a system of study as well as the boundaries and influences on that state, and has been used in restorative ecology for more than a decade. Lastly, that model is sited within an adaptive management scheme that provides a structured, cyclical, objective-oriented process for testing stakeholders cognitive understanding of the ecosystem through a pragmatic implementation and monitoring a host of small-scale interventions developed as part of the adaptive management process. Throughout, evidence of the application of the theories and frameworks are offered, with every effort made to retool conservation-minded development practitioners with a comprehensive strategy for addressing the increasingly fragile social-ecological systems of southwest Madagascar. It is offered, in conclusion, that the seascapes of the region would be an excellent case study worthy of future application of state-and-transition modeling and adaptive management as frameworks for conservation-minded development practitioners whose multiple projects, each with its own objective, have been implemented with a single goal in mind: preserve and protect the state of the supporting environment while providing for the basic needs of the local Malagasy people.