996 resultados para Clupea harengus, age
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
Atlantic herring (Clupea harengus) is an ecologically and economically valuable species in many food webs, yet surprisingly little is known about the variation in the nutritional quality of these fish. Atlantic herring collected from 2005 through 2008 from the Bay of Fundy, Canada, were examined for variability in their nutritional quality by using total lipid content (n=889) and fatty acid composition (n=551) as proxies for nutritional value. A significant positive relationship was found between fish length and total lipid content. Atlantic herring also had significantly different fatty acid signatures by age. Fish from 2005 had significantly lower total lipid content than fish from 2006 through 2008, and all years had significantly different fatty acid signatures. Summer fish were significantly fatter than winter fish and had significantly different fatty acid signatures. For all comparisons (ontogenetic, annual, and seasonal) percent concentrations of omega-3, -6, and long-chain monounsaturated fatty acids were the most important for distinguishing between the fatty acid signatures of fish. This study underscores the importance of quantifying variation in prey quality synoptically with prey quantity in food webs over ontogenetic and temporal scales when evaluating the effect of prey nutritional quality on predators and on modeling trophic dynamics.
Resumo:
Comparative night and day catches of herring larvae were taken during the Rügen-Herring-Larval-Survey (RHLS) in 2007 and 2008 in the Greifswalder Bodden which is the main spawning area of the Western Baltic Spring Spawning Herring. The quantities and the size composition of larvae caught during night and day were examined. During night more larvae were caught compared to the samples taken at daytime, especially with larvae larger than 25 mm. This indicates avoidance reactions, which increase with the developmental stage of the larvae. The differences of the night and day catches are relatively constant until a length of about 25 mm, thus the night/day effect does not influence estimations concerning larvae smaller than 25 mm (e.g. N20 index). There might be an impact on estimations for larger larvae due to the night/day effect. For further research other aspects like cloud coverage at night, phase of the moon, underwater visibility and turbidity should be taken into account. These aspects might influence the avoidance reactions.
Resumo:
Baltic Sea herring is a traditional raw material for the German fish processing industry and the fresh fish market. This applies also for the spring herring of the spawning population of the waters around the island of Rügen. Reduction of the fat content to about 5 % during the spawning cycle limits the processing possibilities of mature herring from this area. Failures in taste and odour (tainting), a common problem of the past have not been detected in the last 3 years. Infestation by nematodes are comparable to other herring stocks and contamination levels of organic and inorganic contaminants are well below allowable limits. The annual German fishing quota of about 85000 t of Baltic Sea herring is now utilised only to 10 %. For a stronger utilization of this stock as in the 70th and 80th , there are scarcely prerequisites. The project of a central processing plant on the island Rügen for about 50000 t of herring as raw material is not realistic. The answer to the question asked at the beginning of this article, whether Baltic Sea herring represents a raw material for the German fish processing industry, is YES, dispite some restrictions.
Resumo:
An account of the occurrenee of tainting in fish and seafood with special consideration of spring spawning herring from the Baltic Sea (estuary of the river Oder) is given. About 26 % of the herring samples examined by sensory methods showed tainting. In general the intensity of taint was weak or moderate and weaker as observed years ago. Also in fishery products (pickled herring, deep fried herring in marinade) processed from tainted herrings the same or a similar sensory intensity of taint as in the raw material was observed. The source of taint is not dear. A pollution with halogenphenols from the sea water could be possible. In further investigations we will monitor the further development and try to identify the tainting compounds.
Resumo:
Geographic Information Systems can help improve ocean literacy and inform our understanding of the human dimensions of marine resource use. This paper describes a pilot project where GIS is used to illustrate the connections between fish stocks and the social, cultural, and economic components of the fishery on land. This method of presenting and merging qualitative and quantitative data represents a new approach to assist fishery managers, participants, policy-makers, and other stakeholders in visualizing an often confusing and poorly understood web of interactions. The Atlantic herring fishery serves as a case study and maps from this pilot project are presented and methods reviewed.
Resumo:
NMFS bottom trawl survey data were used to describe changes in distribution, abundance, and rates of population change occurring in the Gulf of Maine–Georges Bank herring (Clupea harengus) complex during 1963–98. Herring in the region have fully recovered following severe overfishing during the 1960s and 1970s. Three distinct, but seasonally intermingling components from the Gulf of Maine, Nantucket Shoals (Great South Channel area), and Georges Bank appear to compose the herring resource in the region. Distribution ranges contracted as herring biomass declined in the late 1970s and then the range expanded in the 1990s as herring increased. Analysis of research survey data suggest that herring are currently at high levels of abundance and biomass. All three components of the stock complex, including the Georges Bank component, have recovered to pre-1960s abundance. Survey data support the theory that herring recolonized the Georges Bank region in stages from adjacent components during the late 1980s, most likely from herring spawning in the Gulf of Maine.
Resumo:
Histamine levels in batches of heavily salted (fish:salt ratio 4:1) herring (Clupea harengus) were monitored during ripening at 4°C and 25°C. The batches studied were prepared from both pre-spawning and post-spawning (spent) fish using new and used salt. Salt levels in the flesh, which reached 11 to 14% (wet weight basis) during the ripening period, were found to retard histamine formation. During normal spoilage of ice chilled fish, histamine levels had been reported to exceed 50mg/100g flesh as it approached the limit of edibility whilst, in the heavily salted fish, levels remained below 20mg/100g flesh throughout the ripening periods of 18 months for the 4°C batches and 3 months for the 25°C batches. This was the case when the samples were set up and the salt allowed penetrating the flesh at 4°C. When, however, the samples were set up and initially stored at ambient (10-15°C) temperature the histamine levels in the flesh rose above 20mg/100g before enough salt had penetrated to inhibit its generation. The gradual rise in levels which, nevertheless, occurred over the ripening periods followed significantly (5% level of significance) different trends, being greater in the batches prepared from pre-spawning than those from spent fish.
Resumo:
The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild.
Resumo:
High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.
Resumo:
The genetic structure of Atlantic herring Clupea harengus L. was investigated in its north-easterly distribution in the Norwegian Sea and adjacent waters, using 23 neutral and one non-neutral (Cpa111) microsatellite loci. Fish from the suspected 2 main populations - the Norwegian spring-spawning herring (NSSH) and the Icelandic summer-spawning herring (ISSH) - were collected at spawning locations in their respective spawning seasons from 2009 to 2012. Samples were also collected from Norwegian autumn spawning locations, from different local Norwegian fjords such as the inner part of Trondheimsfjorden, Lindås pollene, Landvikvannet and Lusterfjorden, as well as from suspected Faroese spawning components. The observed level of genetic differentiation was significant but low (FST = 0.007) and mostly attributable to the differentiation of the local Norwegian fjord populations. The locus Cpa111, which was detected to putatively be under positive selection, exhibited the highest FST value (0.044). The observed genetic patterns were robust to exclusion of this locus. Landvikvannet herring was also genetically distinguishable from the 3 other fjord populations. In addition, the present study does not support genetic structuring among the ISSH and the NSSH.