886 resultados para Cloud computing, service level agreement, data center
Resumo:
Nel corso di questa tesi analizzeremo che cos'è il cloud computing, illustrando i contratti di service level agreement e le soluzioni presenti nel mercato.
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
Postprint
Resumo:
Nowadays, when most of the business are moving forward to sustainability by providing or getting different services from different vendors, Service Level Agreement (SLA) becomes very important for both the business providers/vendors and as well as for users/customers. There are many ways to inform users/customers about various services with its inherent execution functionalities and even non-functional/Quality of Services (QoS) aspects through negotiating, evaluating or monitoring SLAs. However, these traditional SLA actually do not cover eco-efficient green issues or IT ethics issues for sustainability. That is why green SLA (GSLA) should come into play. GSLA is a formal agreement incorporating all the traditional commitments as well as green issues and ethics issues in IT business sectors. GSLA research would survey on different traditional SLA parameters for various services like as network, compute, storage and multimedia in IT business areas. At the same time, this survey could focus on finding the gaps and incorporation of these traditional SLA parameters with green issues for all these mentioned services. This research is mainly points on integration of green parameters in existing SLAs, defining GSLA with new green performance indicators and their measurable units. Finally, a GSLA template could define compiling all the green indicators such as recycling, radio-wave, toxic material usage, obsolescence indication, ICT product life cycles, energy cost etc for sustainable development. Moreover, people’s interaction and IT ethics issues such as security and privacy, user satisfaction, intellectual property right, user reliability, confidentiality etc could also need to add for proposing a new GSLA. However, integration of new and existing performance indicators in the proposed GSLA for sustainable development could be difficult for ICT engineers. Therefore, this research also discovers the management complexity of proposed green SLA through designing a general informational model and analyses of all the relationships, dependencies and effects between various newly identified services under sustainability pillars. However, sustainability could only be achieved through proper implementation of newly proposed GSLA, which largely depends on monitoring the performance of the green indicators. Therefore, this research focuses on monitoring and evaluating phase of GSLA indicators through the interactions with traditional basic SLA indicators, which would help to achieve proper implementation of future GSLA. Finally, this newly proposed GSLA informational model and monitoring aspects could definitely help different service providers/vendors to design their future business strategy in this new transitional sustainable society.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
This paper presents a proposal for a management model based on reliability requirements concerning Cloud Computing (CC). The proposal was based on a literature review focused on the problems, challenges and underway studies related to the safety and reliability of Information Systems (IS) in this technological environment. This literature review examined the existing obstacles and challenges from the point of view of respected authors on the subject. The main issues are addressed and structured as a model, called "Trust Model for Cloud Computing environment". This is a proactive proposal that purposes to organize and discuss management solutions for the CC environment, aiming improved reliability of the IS applications operation, for both providers and their customers. On the other hand and central to trust, one of the CC challenges is the development of models for mutual audit management agreements, so that a formal relationship can be established involving the relevant legal responsibilities. To establish and control the appropriate contractual requirements, it is necessary to adopt technologies that can collect the data needed to inform risk decisions, such as access usage, security controls, location and other references related to the use of the service. In this process, the cloud service providers and consumers themselves must have metrics and controls to support cloud-use management in compliance with the SLAs agreed between the parties. The organization of these studies and its dissemination in the market as a conceptual model that is able to establish parameters to regulate a reliable relation between provider and user of IT services in CC environment is an interesting instrument to guide providers, developers and users in order to provide services and secure and reliable applications.
Resumo:
Viene analizzato il Cloud Computing, il suo utilizzo, i vari tipi di modelli di servizio. L'attenzione poi vira sul SLA (Service Level Agreement), contratti stipulati tra il provider e l'utente affinchè il servizio venga utilizzato al meglio e in modo sicuro rispettando le norme.Infine vengono analizzati la sicurezza, la privacy e l'accountability nel Cloud.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. ^ In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.^
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.
Resumo:
Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
Cloud computing has been one of the most important topics in Information Technology which aims to assure scalable and reliable on-demand services over the Internet. The expansion of the application scope of cloud services would require cooperation between clouds from different providers that have heterogeneous functionalities. This collaboration between different cloud vendors can provide better Quality of Services (QoS) at the lower price. However, current cloud systems have been developed without concerns of seamless cloud interconnection, and actually they do not support intercloud interoperability to enable collaboration between cloud service providers. Hence, the PhD work is motivated to address interoperability issue between cloud providers as a challenging research objective. This thesis proposes a new framework which supports inter-cloud interoperability in a heterogeneous computing resource cloud environment with the goal of dispatching the workload to the most effective clouds available at runtime. Analysing different methodologies that have been applied to resolve various problem scenarios related to interoperability lead us to exploit Model Driven Architecture (MDA) and Service Oriented Architecture (SOA) methods as appropriate approaches for our inter-cloud framework. Moreover, since distributing the operations in a cloud-based environment is a nondeterministic polynomial time (NP-complete) problem, a Genetic Algorithm (GA) based job scheduler proposed as a part of interoperability framework, offering workload migration with the best performance at the least cost. A new Agent Based Simulation (ABS) approach is proposed to model the inter-cloud environment with three types of agents: Cloud Subscriber agent, Cloud Provider agent, and Job agent. The ABS model is proposed to evaluate the proposed framework.
Resumo:
Mode of access: Internet.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.