961 resultados para Clinical-prediction Rules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The loose and stringent Asthma Predictive Indices (API), developed in Tucson, are popular rules to predict asthma in preschool children. To be clinically useful, they require validation in different settings. Objective To assess the predictive performance of the API in an independent population and compare it with simpler rules based only on preschool wheeze. Methods We studied 1954 children of the population-based Leicester Respiratory Cohort, followed up from age 1 to 10 years. The API and frequency of wheeze were assessed at age 3 years, and we determined their association with asthma at ages 7 and 10 years by using logistic regression. We computed test characteristics and measures of predictive performance to validate the API and compare it with simpler rules. Results The ability of the API to predict asthma in Leicester was comparable to Tucson: for the loose API, odds ratios for asthma at age 7 years were 5.2 in Leicester (5.5 in Tucson), and positive predictive values were 26% (26%). For the stringent API, these values were 8.2 (9.8) and 40% (48%). For the simpler rule early wheeze, corresponding values were 5.4 and 21%; for early frequent wheeze, 6.7 and 36%. The discriminative ability of all prediction rules was moderate (c statistic ≤ 0.7) and overall predictive performance low (scaled Brier score < 20%). Conclusion Predictive performance of the API in Leicester, although comparable to the original study, was modest and similar to prediction based only on preschool wheeze. This highlights the need for better prediction rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prognostic assessment is important for the management of patients with a pulmonary embolism (PE). A number of clinical prediction rules (CPRs) have been proposed for stratifying PE mortality risk. The aim of this systematic review was to assess the performance of prognostic CPRs in identifying a low-risk PE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-specific Occupational Low Back Pain (NOLBP) is a health condition that generates a high absenteeism and disability. Due to multifactorial causes is difficult to determine accurate diagnosis and prognosis. The clinical prediction of NOLBP is identified as a series of models that integrate a multivariate analysis to determine early diagnosis, course, and occupational impact of this health condition. Objective: to identify predictor factors of NOLBP, and the type of material referred to in the scientific evidence and establish the scopes of the prediction. Materials and method: the title search was conducted in the databases PubMed, Science Direct, and Ebsco Springer, between1985 and 2012. The selected articles were classified through a bibliometric analysis allowing to define the most relevant ones. Results: 101 titles met the established criteria, but only 43 metthe purpose of the review. As for NOLBP prediction, the studies varied in relation to the factors for example: diagnosis, transition of lumbar pain from acute to chronic, absenteeism from work, disability and return to work. Conclusion: clinical prediction is considered as a strategic to determine course and prognostic of NOLBP, and to determine the characteristics that increase the risk of chronicity in workers with this health condition. Likewise, clinical prediction rules are tools that aim to facilitate decision making about the evaluation, diagnosis, prognosis and intervention for low back pain, which should incorporate risk factors of physical, psychological and social.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Venous thromboembolism (VTE) is a potentially lethal clinical condition that is suspected in patients with common clinical complaints, in many and varied, clinical care settings. Once VTE is diagnosed, optimal therapeutic management (thrombolysis, IVC filters, type and duration of anticoagulants) and ideal therapeutic management settings (outpatient, critical care) are also controversial. Clinical prediction tools, including clinical decision rules and D-Dimer, have been developed, and some validated, to assist clinical decision making along the diagnostic and therapeutic management paths for VTE. Despite these developments, practice variation is high and there remain many controversies in the use of the clinical prediction tools. In this narrative review, we highlight challenges and controversies in VTE diagnostic and therapeutic management with a focus on clinical decision rules and D-Dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Chest pain raises concern for the possibility of coronary heart disease. Scoring methods have been developed to identify coronary heart disease in emergency settings, but not in primary care. METHODS: Data were collected from a multicenter Swiss clinical cohort study including 672 consecutive patients with chest pain, who had visited one of 59 family practitioners' offices. Using delayed diagnosis we derived a prediction rule to rule out coronary heart disease by means of a logistic regression model. Known cardiovascular risk factors, pain characteristics, and physical signs associated with coronary heart disease were explored to develop a clinical score. Patients diagnosed with angina or acute myocardial infarction within the year following their initial visit comprised the coronary heart disease group. RESULTS: The coronary heart disease score was derived from eight variables: age, gender, duration of chest pain from 1 to 60 minutes, substernal chest pain location, pain increases with exertion, absence of tenderness point at palpation, cardiovascular risks factors, and personal history of cardiovascular disease. Area under the receiver operating characteristics curve was of 0.95 with a 95% confidence interval of 0.92; 0.97. From this score, 413 patients were considered as low risk for values of percentile 5 of the coronary heart disease patients. Internal validity was confirmed by bootstrapping. External validation using data from a German cohort (Marburg, n = 774) revealed a receiver operating characteristics curve of 0.75 (95% confidence interval, 0.72; 0.81) with a sensitivity of 85.6% and a specificity of 47.2%. CONCLUSIONS: This score, based only on history and physical examination, is a complementary tool for ruling out coronary heart disease in primary care patients complaining of chest pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.1 Fundamentals Chest pain is a common complaint in primary care patients (1 to 3% of all consultations) (1) and its aetiology can be miscellaneous, from harmless to potentially life threatening conditions. In primary care practice, the most prevalent aetiologies are: chest wall syndrome (43%), coronary heart disease (12%) and anxiety (7%) (2). In up to 20% of cases, potentially serious conditions as cardiac, respiratory or neoplasic diseases underlie chest pain. In this context, a large number of laboratory tests are run (42%) and over 16% of patients are referred to a specialist or hospitalized (2).¦A cardiovascular origin to chest pain can threaten patient's life and investigations run to exclude a serious condition can be expensive and involve a large number of exams or referral to specialist -­‐ often without real clinical need. In emergency settings, up to 80% of chest pains in patients are due to cardiovascular events (3) and scoring methods have been developed to identify conditions such as coronary heart disease (HD) quickly and efficiently (4-­‐6). In primary care, a cardiovascular origin is present in only about 12% of patients with chest pain (2) and general practitioners (GPs) need to exclude as safely as possible a potential serious condition underlying chest pain. A simple clinical prediction rule (CPR) like those available in emergency settings may therefore help GPs and spare time and extra investigations in ruling out CHD in primary care patients. Such a tool may also help GPs reassure patients with more common origin to chest pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Chest pain raises concern for the possibility of coronary heart disease. Scoring methods have been developed to identify coronary heart disease in emergency settings, but not in primary care. METHODS: Data were collected from a multicenter Swiss clinical cohort study including 672 consecutive patients with chest pain, who had visited one of 59 family practitioners' offices. Using delayed diagnosis we derived a prediction rule to rule out coronary heart disease by means of a logistic regression model. Known cardiovascular risk factors, pain characteristics, and physical signs associated with coronary heart disease were explored to develop a clinical score. Patients diagnosed with angina or acute myocardial infarction within the year following their initial visit comprised the coronary heart disease group. RESULTS: The coronary heart disease score was derived from eight variables: age, gender, duration of chest pain from 1 to 60 minutes, substernal chest pain location, pain increases with exertion, absence of tenderness point at palpation, cardiovascular risks factors, and personal history of cardiovascular disease. Area under the receiver operating characteristics curve was of 0.95 with a 95% confidence interval of 0.92; 0.97. From this score, 413 patients were considered as low risk for values of percentile 5 of the coronary heart disease patients. Internal validity was confirmed by bootstrapping. External validation using data from a German cohort (Marburg, n = 774) revealed a receiver operating characteristics curve of 0.75 (95% confidence interval, 0.72; 0.81) with a sensitivity of 85.6% and a specificity of 47.2%. CONCLUSIONS: This score, based only on history and physical examination, is a complementary tool for ruling out coronary heart disease in primary care patients complaining of chest pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le "Chest wall syndrome" (CWS) est défini comme étant une source bénigne de douleurs thoraciques, localisées sur la paroi thoracique antérieure et provoquées par une affection musculosquelettique. Le CWS représente la cause la plus fréquente de douleurs thoraciques en médecine de premier recours. Le but de cette étude est de développer et valider un score de prédiction clinique pour le CWS. Une revue de la littérature a d'abord été effectuée, d'une part pour savoir si un tel score existait déjà, et d'autre part pour retrouver les variables décrites comme étant prédictives d'un CWS. Le travail d'analyse statistique a été effectué avec les données issues d'une cohorte clinique multicentrique de patients qui avaient consulté en médecine de premier recours en Suisse romande avec une douleur thoracique (59 cabinets, 672 patients). Un diagnostic définitif avait été posé à 12 mois de suivi. Les variables pertinentes ont été sélectionnées par analyses bivariées, et le score de prédiction clinique a été développé par régression logistique multivariée. Une validation externe de ce score a été faite en utilisant les données d'une cohorte allemande (n= 1212). Les analyses bivariées ont permis d'identifier 6 variables caractérisant le CWS : douleur thoracique (ni rétrosternale ni oppressive), douleur en lancées, douleur bien localisée, absence d'antécédent de maladie coronarienne, absence d'inquiétude du médecin et douleur reproductible à la palpation. Cette dernière variable compte pour 2 points dans le score, les autres comptent pour 1 point chacune; le score total s'étend donc de 0 à 7 points. Dans la cohorte de dérivation, l'aire sous la courbe sensibilité/spécificité (courbe ROC) est de 0.80 (95% de l'intervalle de confiance : 0.76-0.83). Avec un seuil diagnostic de > 6 points, le score présente 89% de spécificité et 45% de sensibilité. Parmi tous les patients qui présentaient un CWS (n = 284), 71% (n = 201) avaient une douleur reproductible à la palpation et 45% (n= 127) sont correctement diagnostiqués par le score. Pour une partie (n = 43) de ces patients souffrant de CWS et correctement classifiés, 65 investigations complémentaires (30 électrocardiogrammes, 16 radiographies du thorax, 10 analyses de laboratoire, 8 consultations spécialisées, et une tomodensitométrie thoracique) avaient été réalisées pour parvenir au diagnostic. Parmi les faux positifs (n = 41), on compte trois angors stables (1.8% de tous les positifs). Les résultats de la validation externe sont les suivants : une aire sous la courbe ROC de 0.76 (95% de l'intervalle de confiance : 0.73-0.79) avec une sensibilité de 22% et une spécificité de 93%. Ce score de prédiction clinique pour le CWS constitue un complément utile à son diagnostic, habituellement obtenu par exclusion. En effet, pour les 127 patients présentant un CWS et correctement classifiés par notre score, 65 investigations complémentaires auraient pu être évitées. Par ailleurs, la présence d'une douleur thoracique reproductible à la palpation, bien qu'étant sa plus importante caractéristique, n'est pas pathognomonique du CWS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A patient's chest pain raises concern for the possibility of coronary heart disease (CHD). An easy to use clinical prediction rule has been derived from the TOPIC study in Lausanne. Our objective is to validate this clinical score for ruling out CHD in primary care patients with chest pain. Methods: This secondary analysis used data collected from a oneyear follow-up cohort study attending 76 GPs in Germany. Patients attending their GP with chest pain were questioned on their age, gender, duration of chest pain (1-60 min), sternal pain location, pain increases with exertion, absence of tenderness point at palpation, cardiovascular risks factors, and personal history of cardiovascular disease. Area under the curve (ROC), sensitivity and specificity of the Lausanne CHD score were calculated for patients with full data. Results: 1190 patients were included. Full data was available for 509 patients (42.8%). Missing data was not related to having CHD (p = 0.397) or having a cardiovascular risk factor (p = 0.275). 76 (14.9%) were diagnosed with a CHD. Prevalence of CHD were respectively of 68/344 (19.8%), 2/62 (3.2%), 6/103 (5.8%) in the high, intermediate and low risk category. ROC was of 72.9 (CI95% 66.8; 78.9). Ruling out patients with low risk has a sensitivity of 92.1% (CI95% 83.0; 96.7) and a specificity of 22.4% (CI95% 18.6%; 26.7%). Conclusion: The Lausanne CHD score shows reasonably good sensitivity and can be used to rule out coronary events in patients with chest pain. Patients at risk of CHD for other rarer reasons should nevertheless also be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Marburg Heart Score (MHS) aims to assist GPs in safely ruling out coronary heart disease (CHD) in patients presenting with chest pain, and to guide management decisions. AIM: To investigate the diagnostic accuracy of the MHS in an independent sample and to evaluate the generalisability to new patients. DESIGN AND SETTING: Cross-sectional diagnostic study with delayed-type reference standard in general practice in Hesse, Germany. METHOD: Fifty-six German GPs recruited 844 males and females aged ≥ 35 years, presenting between July 2009 and February 2010 with chest pain. Baseline data included the items of the MHS. Data on the subsequent course of chest pain, investigations, hospitalisations, and medication were collected over 6 months and were reviewed by an independent expert panel. CHD was the reference condition. Measures of diagnostic accuracy included the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, likelihood ratios, and predictive values. RESULTS: The AUC was 0.84 (95% confidence interval [CI] = 0.80 to 0.88). For a cut-off value of 3, the MHS showed a sensitivity of 89.1% (95% CI = 81.1% to 94.0%), a specificity of 63.5% (95% CI = 60.0% to 66.9%), a positive predictive value of 23.3% (95% CI = 19.2% to 28.0%), and a negative predictive value of 97.9% (95% CI = 96.2% to 98.9%). CONCLUSION: Considering the diagnostic accuracy of the MHS, its generalisability, and ease of application, its use in clinical practice is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Chest wall syndrome (CWS), the main cause of chest pain in primary care practice, is most often an exclusion diagnosis. We developed and evaluated a clinical prediction rule for CWS. METHODS: Data from a multicenter clinical cohort of consecutive primary care patients with chest pain were used (59 general practitioners, 672 patients). A final diagnosis was determined after 12 months of follow-up. We used the literature and bivariate analyses to identify candidate predictors, and multivariate logistic regression was used to develop a clinical prediction rule for CWS. We used data from a German cohort (n = 1212) for external validation. RESULTS: From bivariate analyses, we identified six variables characterizing CWS: thoracic pain (neither retrosternal nor oppressive), stabbing, well localized pain, no history of coronary heart disease, absence of general practitioner's concern, and pain reproducible by palpation. This last variable accounted for 2 points in the clinical prediction rule, the others for 1 point each; the total score ranged from 0 to 7 points. The area under the receiver operating characteristic (ROC) curve was 0.80 (95% confidence interval 0.76-0.83) in the derivation cohort (specificity: 89%; sensitivity: 45%; cut-off set at 6 points). Among all patients presenting CWS (n = 284), 71% (n = 201) had a pain reproducible by palpation and 45% (n = 127) were correctly diagnosed. For a subset (n = 43) of these correctly classified CWS patients, 65 additional investigations (30 electrocardiograms, 16 thoracic radiographies, 10 laboratory tests, eight specialist referrals, one thoracic computed tomography) had been performed to achieve diagnosis. False positives (n = 41) included three patients with stable angina (1.8% of all positives). External validation revealed the ROC curve to be 0.76 (95% confidence interval 0.73-0.79) with a sensitivity of 22% and a specificity of 93%. CONCLUSIONS: This CWS score offers a useful complement to the usual CWS exclusion diagnosing process. Indeed, for the 127 patients presenting CWS and correctly classified by our clinical prediction rule, 65 additional tests and exams could have been avoided. However, the reproduction of chest pain by palpation, the most important characteristic to diagnose CWS, is not pathognomonic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suppose that we are interested in establishing simple, but reliable rules for predicting future t-year survivors via censored regression models. In this article, we present inference procedures for evaluating such binary classification rules based on various prediction precision measures quantified by the overall misclassification rate, sensitivity and specificity, and positive and negative predictive values. Specifically, under various working models we derive consistent estimators for the above measures via substitution and cross validation estimation procedures. Furthermore, we provide large sample approximations to the distributions of these nonsmooth estimators without assuming that the working model is correctly specified. Confidence intervals, for example, for the difference of the precision measures between two competing rules can then be constructed. All the proposals are illustrated with two real examples and their finite sample properties are evaluated via a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Cognitive impairments are regarded as a core component of schizophrenia. However, the cognitive dimension of psychosis is hardly considered by ultra-high risk (UHR) criteria. Therefore, we studied whether the combination of symptomatic UHR criteria and the basic symptom criterion "cognitive disturbances" (COGDIS) is superior in predicting first-episode psychosis. METHOD In a naturalistic 48-month follow-up study, the conversion rate to first-episode psychosis was studied in 246 outpatients of an early detection of psychosis service (FETZ); thereby, the association between conversion, and the combined and singular use of UHR criteria and COGDIS was compared. RESULTS Patients that met UHR criteria and COGDIS (n=127) at baseline had a significantly higher risk of conversion (hr=0.66 at month 48) and a shorter time to conversion than patients that met only UHR criteria (n=37; hr=0.28) or only COGDIS (n=30; hr=0.23). Furthermore, the risk of conversion was higher for the combined criteria than for UHR criteria (n=164; hr=0.56 at month 48) and COGDIS (n=158; hr=0.56 at month 48) when considered irrespective of each other. CONCLUSIONS Our findings support the merits of considering both COGDIS and UHR criteria in the early detection of persons who are at high risk of developing a first psychotic episode within 48months. Applying both sets of criteria improves sensitivity and individual risk estimation, and may thereby support the development of stage-targeted interventions. Moreover, since the combined approach enables the identification of considerably more homogeneous at-risk samples, it should support both preventive and basic research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Rapid assessment and intervention is important for the prognosis of acutely ill patients admitted to the emergency department (ED). The aim of this study was to prospectively develop and validate a model predicting the risk of in-hospital death based on all available information available at the time of ED admission and to compare its discriminative performance with a non-systematic risk estimate by the triaging first health-care provider. METHODS Prospective cohort analysis based on a multivariable logistic regression for the probability of death. RESULTS A total of 8,607 consecutive admissions of 7,680 patients admitted to the ED of a tertiary care hospital were analysed. Most frequent APACHE II diagnostic categories at the time of admission were neurological (2,052, 24 %), trauma (1,522, 18 %), infection categories [1,328, 15 %; including sepsis (357, 4.1 %), severe sepsis (249, 2.9 %), septic shock (27, 0.3 %)], cardiovascular (1,022, 12 %), gastrointestinal (848, 10 %) and respiratory (449, 5 %). The predictors of the final model were age, prolonged capillary refill time, blood pressure, mechanical ventilation, oxygen saturation index, Glasgow coma score and APACHE II diagnostic category. The model showed good discriminative ability, with an area under the receiver operating characteristic curve of 0.92 and good internal validity. The model performed significantly better than non-systematic triaging of the patient. CONCLUSIONS The use of the prediction model can facilitate the identification of ED patients with higher mortality risk. The model performs better than a non-systematic assessment and may facilitate more rapid identification and commencement of treatment of patients at risk of an unfavourable outcome.