967 resultados para Clam fisheries
Resumo:
Mode of access: Internet.
Resumo:
To responsively manage the striped venus clam (Chamelea gallina) fisheries, a multidisciplinary approach has been adopted through the investigation of new and updated biological aspects (e.g. age, growth, reproduction, size at first maturity, fecundity) and the interaction gear- target or non-target species (e.g. reburial ability, survival potential and exerted damage). The striped venus clam is an important socio-economic species in the Italian fishery context, highly regulated by national and international laws aiming at guaranteeing both social and ecological sustainability. Studies on growth and reproduction revealed that the size at first maturity is reached within the first year of life, whereas the present Minimum Conservation Reference Size of 22 mm is reached at two year of age. The annual reproductive cycle, which is driven by rises in seawater temperature and chlorophyll-a concentration, spans during the warmer months (late spring-summer) with multiple spawning events of different intensity occurring over the spawning period, and the number of potentially emitted gametes is positively related to shell size. Reburial tests conducted on undamaged specimens highlighted the ability of clams to rebury in the sediment once discarded, independently from the size. On the other hand, survival experiments in the laboratory and at sea, on both damaged and undamaged individuals, served to demonstrate that the species has a high survival rate, thus supporting the claim that discarded individuals can contribute to restock the natural populations. Moreover, the evaluation and quantification of damage induced by dredging on the discarded macro-benthic fauna living associated with C. gallina highlighted that soft-shelled or soft-bodied species are the most affected by the fishing process and subjected to a higher mortality. All these findings are of pivotal importance to rationally support the management measures to be adopted in the striped venus clam fishery.
Resumo:
The Downeast Fisheries Trail is an educational trail that showcases active and historic fisheries heritage sites, such as fish hatcheries, aquaculture facilities, fishing harbors, clam flats, processing plants and other related public places in an effort to educate residents and visitors about the importance of the region’s maritime heritage and the role of marine resources to the area’s economy.
Resumo:
Commercial fisheries exploiting the demersal resources of Western Adriatic Sea produce high bycatch and discard rates; the most important are bottom trawls, hydraulic dredges and passive nets. The five papers here published assess these fisheries’ impacts and investigate the potential of specific solutions to promote more sustainable exploitation. Papers I, II, III focused on bottom trawl fishery. Paper I compared the catch performance of the two legal codends by accounting for the entire species community in trawl catches. 50% of the catch in weight and 80% in count numbers consisted of discarded species, highlighting the severe impact of this fishery. Paper II estimated the selectivity of experimental codend having meshes turned 90° (T90) and of traditional diamond mesh codend with same mesh size. The T90 codend improved the size selection for all the target species. Paper III investigated the use of T90 meshes in the extension piece together with a reduction in mesh number at extension circumference. Results revealed that both these changes applied in the extension piece did not improve the selectivity of the main target species. Paper IV focused on hydraulic dredge fishery targeting the striped venus clam by assessing the clams’ size selection process operated by the dredge. 25% of the clams caught were not size selected due to clogging phenomenon in the dredge. The clam length with 50% retention probability was 18.9 mm, highlighting that the additional size selection process of sorting sieve is necessary to land only the legal clams >22 mm. Paper V compared the catch performance of innovative fish pots and of traditional trammel net. A similar catch efficiency between the two gears for the commercial portion was observed, while the trammel net produced significantly more discards in terms of species number and weight. All the results are discussed in fisheries management perspective.
Resumo:
The role of dissolved free amino acids (DFAA) in nitrogen and energy budgets was investigated for the giant clam, Tridacna maxima, growing under field conditions at One Tree Island, at the southern end of the Great Barrier Reef, Australia. Giant clams (121.5-143.7 mm in shell length) took up neutral, acidic and basic amino acids. The rates of net uptake of DFAA did not differ between light and dark, nor for clams growing under normal or slightly enriched ammonium concentrations. Calculations based on the net uptake concentrations typical of the maximum concentrations of DFAA found in coral reef waters (similar to 0.1 mu M)revealed that DFAA could only contribute 0.1% and 1% of the energy and nitrogen demands of giant clams, respectively. These results suggest that DFAA does not supply significant amounts of energy or nitrogen for giant clams or their symbionts.
Resumo:
Nutrients were added to 12 microatolls in One Tree Island lagoon every low tide for 13 mo to an initial concentration of 10 mu M (ammonium, N) and 2 mu M (phosphate, P). These concentrations remained above background for 2 to 3 h after addition. The addition of ammonium (N and NI-P but not P alone) significantly increased P, (gross photosynthesis) P,, (net photosynthesis) and R (respiration) per unit wet-tissue weight and cc (photosynthetic efficiency) in Tridacna maxima after 3 mo nutrient enrichment. These responses to small and transient changes in ammonium concentrations suggest that symbiotic clams are not nutrient-replete, and that even subtle changes in nutrients can have a measurable effect on photosynthesis. The same clams did not show significant differences in photosynthetic parameters 6 mo after the beginning of nutrient enrichment, suggesting that their previous responses had either been seasonal or that symbiotic clams such as T. maxima are able to adjust their photophysiology following external changes in nutrient concentrations.
Resumo:
There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.
Resumo:
OBJECTIVES: 1. To critically evaluate a variety of mathematical methods of calculating effective population size (Ne) by conducting comprehensive computer simulations and by analysis of empirical data collected from the Moreton Bay population of tiger prawns. 2. To lay the groundwork for the application of the technology in the NPF. 3. To produce software for the calculation of Ne, and to make it widely available.