995 resultados para Chloride Cells
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Microalgae have been studied because of their great potential as a source of new compounds with important value for biotechnology and to understand their strategies of survival in extreme environments. The microalgae Coccomyxa sp., studied in this thesis, is a poly-extremophile witch was isolated from the acid mine drainage of S. Domingos mine. This environment is characterized by low pH (<3) and high concentration of metals, such as copper and iron. The main purpose of the present work was to evaluate the potential bioactivity in an ex-vivo animal model (Fundulus heteroclitus), and expression on selected genes, of cellular extracts obtained from cultures of Coccomyxa sp. at pH 7 without or with exposure to copper (0.6mM Cu²+). The extracts of Coccomyxa sp. cultured at pH 7 exposed to copper show a great potential to be used as epithelial NKCC inhibitors, revealing their potential use as diuretics, but did not show significant effects on gene expression. Coccomyxa sp. could be a good source of cellular extracts with a great potential to be used in pharmaceutical and biotechnology industries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The relative condition factor (Kn), gonadosomatic index (GSI), selected hematological variables and gill morphology of the fish Astyanax fasciatus were analyzed in two sites (site I was unpolluted and site 2 was polluted with untreated domestic sewage) of a tropical river (Camanducaia river, São Paulo State, Brazil). The relationship between the body mass (M-B) and the standard length (L-S) of A. fasciatus from both sites was M-B = 0.00799 L-S(3.51843). Tyhe Kn values from both the males and females were significantly higher in site 2. The mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were higher in females from site 2. Gill tissue anomalies and gill parasites were rare in fish from both sites; however, the number of chloride cells was significantly higher in fish from site 1. A. fasciatus presents high capacity to live in ion-poor and soft water and is able to compensate for environmental changes caused by untreated domestic sewage discharges. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A dissertação foi elaborada no formato de artigo, intitulado de “Immunohistochemical and structural biomarkers in two fish species exposed to the industrial area in Amazon Estuary”, submetido à revista Environmental Monitoring and Assessment, formatado segundo os padrões da revista, não contendo resumo em português.
Resumo:
Water is an essential factor in maintaining the vital functions of living beings. We have observed a growing commitment of quality, are due to pollution from many sources and even entire watersheds, whether for industrial waste, sewage, or for substances used in farming such as pesticides, herbicides and fertilizers. Nickel is the 24th most abundant element on earth, is a heavy metal that, in the form of chloride, is a proven genotoxic and mutagenic. Due to its industrial use, there was considerable increase of its concentration in surface sediments. Fish combine characteristics that make them excellent experimental models for aquatic toxicology studies, which are particularly usable as warn about the potential danger of chemicals or the possibility of environmental pollution. Due to impaired water quality and the few published studies relating the nickel with the tissue change, this study aimed at assessing the consequences of the presence of nickel in the aquatic environment. For this analysis, we used individuals of Oreochromis niloticus, exposed for 96 hours at three different concentrations of nickel dissolved in water compared to a control group. After exposure, the gills were removed and these were analyzed by ultramorphological, histological and histochemical analysis. The results indicate that all concentrations used in the experiment altered the histophysiology of exposed individuals. We observed the following changes: rupture of paviment cells, thus resulting in bleeding, loss of microridges surface of these cells and epithelial loss in the gills of all animals in all treatments with nickel chloride, the histochemical analysis showed non-proliferation of chloride cells. However, there was a dose-dependent increase of mucus cells in all animals. Therefore, nickel has toxic potential to fish, from the smallest concentration used up to twice as permitted by law, indicating... (Complete abstract click electronic access below)
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
Ruthenium compounds in general are well suited for medicinal applications. They have been investigated as immunosuppressants, nitric oxide scavengers, antimicrobial agents, and antimalarials. The aim of this study is to evaluate the immunomodulatory activity of cis-(dichloro) tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) on human peripheral blood mononuclear cells (PBMC). The cytotoxic studies performed here revealed that the ruthenium( III) complex presents a cytotoxic activity towards normal human PBMC, only at very high concentration. Results also showed that cis-[ RuCl(2)(NH(3))(4)] Cl presents a dual role on PBMC stimulating proliferation and interleukin-2 (IL-2) production at low concentration and inducing cytotoxicity, inability to proliferate, and inhibiting IL-2 production at high concentration. The noncytotoxic activity of cis-[RuCl(2)(NH(3))(4)] Cl at low concentration towards PBMC, which correlates with the small number of annexin V positive cells and also the absence of DNA fragmentation, suggest that this compound does not induce apoptosis on PBMC. For the first time, we show that, at low concentration (10-100 mu g L(-1)), the cis-[ RuCl(2)(NH(3))(4)] Cl compound induces peripheral blood lymphocytes proliferation and also stimulates them to IL-2 production. These results open a new potential applicability of ruthenium(III) complexes as a possible immune regulatory compound acting as immune suppressor at high concentration and as immune stimulator at low concentration.
Resumo:
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Resumo:
Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 ± 393 cells/mm²) compared to control (1886 ± 892 cells/mm²; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm² (2 µg/g) and 845 ± 82 cells/mm² (6 µg/g), also lower than control (1312 ± 31 cells/mm²; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.
Resumo:
Use of underarm aluminium (Al)-based antiperspirant salts may be a contributory factor in breast cancer development. At the 10th Keele meeting, Al was reported to cause anchorage-independent growth and double strand DNA breaks in MCF10A immortalised non-transformed human breast epithelial cells. We now report that exposure of MCF10A cells to Al chloride or Al chlorohydrate also compromised DNA repair systems. Longterm (19–21 weeks) exposure to Al chloride or Al chlorohydrate at a 10−4 M concentration resulted in reduced levels of BRCA1 mRNA as determined by real-time RT-PCR and BRCA1 protein as determined by Western immunoblotting. Reduced levels of mRNA for other DNA repair genes (BRCA2, CHK1, CHK2, Rad51, ATR) were also observed using real-time RT-PCR. Loss of BRCA1 or BRCA2 gene function has long been associated with inherited susceptibility to breast cancer but these results suggest that exposure to aluminium-based antiperspirant salts may also reduce levels of these key components of DNA repair in breast epithelial cells. If Al can not only damage DNA but also compromise DNA repair systems, then there is the potential for Al to impact on breast carcinogenesis.
Resumo:
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-aprotein kinase C (aPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and aPKC (aPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and aPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar aPKC-IR cell density (mean density = 1306 ± 393 cells/mm2) compared to control (1886 ± 892 cells/mm2; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm2 (2 µg/g) and 845 ± 82 cells/mm2 (6 µg/g), also lower than control (1312 ± 31 cells/mm2; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of aKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.
Resumo:
Erwinia amylovora is a necrogenic bacterium that causes fire blight of the Maloideae subfamily of Roseacae, such as apple and pear. It provokes necrosis in aerial parts of susceptible host plants and the typical hypersensitive reaction in non-host plants. The secreted hatpin, HrpN(ea), is able by itself to induce an active cell death in non-host plants. Ion flux modulations were shown to be involved early in such processes but very few data are available on the plasma membrane ion channel activities responsible for the pathogen-induced ion fluxes. We show here that HrpNea induces cell death in non-host Arabidopsis thaliana suspension cells. We further show that two cystic fibrosis transmembrane conductance regulator modulators, glibenclamide and bromotetramisole, can regulate anion channel activities and HrpN(ea)-induced cell death. (c) 2005 Elsevier SAS. All rights reserved.