959 resultados para Chiral symmetry restoration
Resumo:
Chiral-symmetry restoration is usually discussed in the context of quark matter, a system of deconfined quarks. However, many systems like stable nuclei and neutron stars have quarks confined within nucleons. In the present paper we use a Fermi sea of three-quark clusters instead of a Fermi sea of deconfined quarks to investigate the in-medium quark condensate. We find that an enhancement of the chiral breaking in clustered matter as claimed in the literature is not a consequence of the clustering but rather dependent on the microscopic model dynamics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study QCD with twelve light flavors at intermediate values of the bare lattice coupling. We contrast the results for the order parameter with different theoretical models motivated by the physics of the Goldstone phase and of the symmetric phase, and we perform a model independent analysis of the meson spectrum inspired by universal properties of chiral symmetry. Our analysis favors chiral symmetry restoration.
Resumo:
We study the conjectured “insensitivity to chiral symmetry breaking” in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states, and chiral symmetry, we adopt the truncated Coulomb-gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of I=1/2 and I=3/2 baryons, up to large spin J=13/2, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.
Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses
Resumo:
We derive the formal Ward identities relating pseudoscalar susceptibilities and quark condensates in three-flavor QCD, including consistently the 77-n' sector and the U-A(1) anomaly. These identities are verified in the low-energy realization provided by ChPT, both in the standard SU(3) framework for the octet case and combining the use of the SU(3) framework and the large-Nc expansion of QCD to account properly for the nonet sector and anomalous contributions. The analysis is performed including finite temperature corrections as well as the calculation of U(3) quark condensates and all pseudoscalar susceptibilities, which together with the full set of Ward identities, are new results of this work. Finally, the Ward identities are used to derive scaling relations for pseudoscalar masses which explain the behavior with temperature of lattice screening masses near chiral symmetry restoration.
Resumo:
A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.
Resumo:
We provide a detailed expression of the vibrational potential for the lattice dynamics of single-wall carbon nanotubes (SWCNT's) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low-frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman- and infrared-active modes), velocities of acoustic modes, and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of SWCNT's are fulfilled.
Resumo:
Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.
Resumo:
In this work, we study the influence of the way pious couple to nucleons in perturbative calculation of an observable in the pion-nucleon scattering.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An approximate analytical expression for the first two eigenvalues of the Schrodinger equation for the potential V(x) = Ax(4) + Bx(2) is achieved by using the Symanzik scaling symmetry. A kind of symmetry restoration when one of the potential parameters changes conveniently is observed. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Using a form of the effective potential for composite operators with a variational approach we show that it is possible to get different directions of the chiral phase transition in QCD. Which one occurs depends on the way the Schwinger-Dyson equation for the fermion self-energy is used in the 2-loop term of the effective potential. We must choose the 2-loop term which agrees with phenomenology in each form of the effective potential.