925 resultados para Centric fusion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Deer species of the genus Mazama show significant inter and intraspecific chromosomal variation due to the occurrence of rearrangements and B chromosomes. Given that carriers of aneuploidies and structural rearrangements often show anomalous chromosome pairings, we here performed a synaptonemal complex analysis to study chromosome pairing behavior in a red brocket deer (Mazama americana) individual that is heterozygous for a Robertsonian translocation, is a B chromosome carrier, and has a multiple sex chromosome system (XY1Y2). The synaptonemal complex in spermatocytes showed normal chromosome pairings for all chromosomes, including the autosomal and sex trivalents. The electromicrographs showed homology among B chromosomes since they formed bivalents, but they also appeared as univalents, indicating their anomalous behavior and non-Mendelian segregation. Thus, synaptonemal complex analysis is a useful tool to evaluate the role of B chromosomes and rearrangements during meiosis on the intraspecific chromosomal variation that is observed in the majority of Mazama species. © FUNPEC-RP.
Resumo:
该文综合形态、行为、生态、分布、染色体及有灵化石资料的比较分析研究,论述了白颊长臂猿(Hylobates lencogenys)和红颊长臂猿(H. gabriellae)的种级地位有效性;着重讨论了黑长臂猿(H. concolor)及白眉长臂猿(H. hoolock)的系统地位;重新构建了现生11种长臂猿系统发育的新系谱和依罗伯逊融合(Robert-sonian centric fusion)进化途径的长臂猿演化假说。
Resumo:
Foram analisados os cromossomos de 117 bovinos de diferentes raças para identificação de fusão cêntrica e os cromossomos de 100 éguas jovens da raça Brasileiro de Hipismo para identificação de linhagens 63,X, utilizando a técnica de identificação do X baseada na heterocromatina intersticial do braço longo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The karyotypes of five species of Brazilian Pseudophyllinae belonging to four tribes were here studied. The data available in the literature altogether with those obtained with species in here studied allowed us to infer that 2n(♂)=35 is the highest chromosome number found in the family Tettigoniidae and that it is present in species belonging to Pseudophyllinae, Zaprochilinae and in one species of Tettigoniinae. In spite of that all five species exhibit secondary karyotypes arisen surely by a mechanism of chromosomal rearrangement of centric fusion, tandem fusion and centric inversion types from those with 2n(♂)=35 and FN=35, they share some common traits. The X chromosome is submetacentric (FN=36), heteropicnotic during the first prophase, the largest of the set but its size is rather variable among the species and the sex chromosomal mechanism is of the XO( ♂ ), XX( ♀ ) type. The chromosomal rearrangements involved in the karyotype evolution of the Pseudophyllinae and its relationship with those of the family Tettigoniidae are discussed and we propose that the basic and the ancestral karyotype of the Tettigoniidae is formed by 2n(♂)=35, FN=35 and not by 2n(♂)=31, FN= 31, as usually accepted.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A Robertsonian centric fusion between chromosomes 1 and 25 in Blonde d'Aquitaine cattle in New Zealand is reported. This fused chromosome is the same as the widely reported 1/29 translocation chromosome with the difference in the numbering arising from inconsistencies in the G- and R-banded cattle karyotypes of the International System for Cytogenetic Nomenclature of Domestic Animals, 1989.
Resumo:
We made a cytogenetic analysis of four species of Oxyopidae and compared it with the karyotype data of all species of this family. In Hamataliwa sp, the mitotic cells showed 2n♂ = 26+X 1X 2 and telocentric chromosomes. The 2n♂ = 28, which has been described for only one oxyopid spider, is the highest diploid number reported for this family. Peucetia species exhibited distinct karyotype characteristics, i.e., 2n♂ = 20+X 1X 2 in P. flava and 2n♂ = 20+X in P. rubrolineata, revealing interspecific chromosome variability within this genus. However, both Peucetia species exhibited telocentric chromosomes. The most unexpected karyotype was encountered in Oxyopes salticus, which presented 2n♂ = 10+X in most individuals and a predominance of biarmed chromosomes. Additionally, one male of the sample of O. salticus was heterozygous for a centric fusion that originated the first chromosomal pair and exhibited one supernumerary chromosome in some cells. Testicular nuclei of Hamataliwa sp and O. salticus revealed NORs on autosomal pairs, after silver impregnation. The majority of Oxyopidae spiders have their karyotype differentiated by both reduction in diploid number chromosome number and change of the sex chromosome system to X type; however, certain species retain the ancestral chromosome constitution 2n = 26+X1X2. The most remarkable karyotype differentiation occurred in O. salticus studied here, which showed the lowest diploid number ever observed in Oxyopidae and the second lowest registered for Entelegynae spiders. © FUNPEC-RP www.funpecrp.com.br.
Resumo:
The Amazonian brown brocket Mazama nemorivaga (Cuvier, 1817) is a small to medium-sized deer from the Amazon rainforest and ecotones. The first karyotype described was 2n=67 to 69 + 2-7 B and FN= 69-72, in which all chromosomes were acrocentric and the X chromosome was the only submetacentric chromosome. However, important aspects of the species chromosome evolution were not resolved because of the lack of information on chromosome banding. The G-banding pattern of M. nemorivaga karyotype showedthe presence of an XX/XY1Y2 sex chromosome system as a product of an X-autosome tandem fusion, which results in a basic 2n=68, FN=70 in females and 2n= 69, FN=70 in males. The fact that this karyotype only differs from that of Capreolus capreolus pygargus (Pallas, 1771; 2n=70, FN=72+B) by X-autosome tandem fusion may corroborate the basal condition of M. nemorivaga and its proximity to the ancestral karyotype of the American Odocoileini. A derived karyotype 2n=67, XY1Y2, FN=70 + 3B from the Brazilianstate of Mato Grosso (the western Amazon) may be evidence of differentiation between western and eastern populations. © Bruno Ferreto Fiorillo et al.