954 resultados para Central Iberian Zone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho ocupa-se do estudo do Complexo Xisto-Grauváquico ante-ordovícico (Grupo das Beiras) na região do Caramulo-Buçaco (centro de Portugal). Em termos geológicos, a área estudada pertence à Zona Centro Ibérica e encontra-se limitada a N pelo granito do Caramulo, a S pela bacia meso-cenozóica de Arganil, a W pelo sinclinal paleozóico do Buçaco e pela bacia meso-cenozóica ocidental portuguesa e a E pelo sinclinal paleozóico de Arganil e pelo plutonito granítico de Tábua-Santa Comba Dão; no seio da área estudada encontra-se a bacia meso-cenozóica de Mortágua. Com base nas características litológicas e estruturais distinguem-se no Complexo Xisto Grauváquico 4 grandes conjuntos litológicos concordantes entre si, designados de Unidades I, II, III e IV, que se desenvolvem da base para o topo de N para S. A Unidade I situa-se a N da região. O seu limite inferior é desconhecido, e o superior posiciona-se no último conjunto arenoso com potência decamétrica. É constituída por xistos cinzentos e negros com intercalações de arenitos de espessura não superior a 100 metros e de extensão lateral quilométrica. Apresenta uma espessura mínima de 1000 m. A Unidade II apresenta consideravelmente menor proporção de material arenoso intercalado entre os pelitos comparativamente à unidade inferior. É caracterizada por apresentar um predomínio de material silto-argiloso e escassos níveis arenosos com potência não superior à dezena de metros e escassa continuidade lateral. Cartograficamente esta unidade constitui uma franja alargada de orientação próxima a E-W. Apresenta uma espessura aproximada de 1500 m. A Unidade III é caracterizada pela presença de conjuntos arenosos com extensão lateral quilométrica e espessura de várias dezenas de metros, separados por material silto-argiloso. Os limites inferior e superior estão situados respectivamente abaixo e acima dos principais conjuntos arenosos. Esta unidade apresenta uma espessura máxima estimada na ordem dos 2000 m. A Unidade IV, que é a unidade superior, apresenta um predomínio pelítico, com escassas intercalações de conjuntos arenosos. O seu limite inferior encontra-se no topo do último conjunto arenoso da Unidade III. Apresenta uma espessura mínima de 500 m. As características sedimentológicas das 4 unidades indicam uma sedimentação num ambiente de plataforma externa siliciclástica aberta, com a construção de barras e por vezes sujeita à acção de tempestades, com sucessivos períodos de superficialização e profundização numa bacia de sedimentação bastante subsidente. Em termos estruturais, para além duma deformação pré-ordovícica, que é comprovada pelo forte mergulho e dispersão da orientação dos eixos da 1ª fase varisca e da lineação de intersecção L1, a área estudada foi principalmente afectada pela Orogenia Varisca. A 1ª fase de deformação varisca (F1) gerou dobras com superfícies axiais e xistosidade associada (S1) de direcção WNW-ESE, e forte pendor para NNE. Estas dobras D1 apresentam comprimentos de onda que nunca chegam a ser quilométricos, desenvolvendo-se um grande flanco inverso denunciando a presença de uma antiforma para NNE e uma sinforma para SSW. A 2ª fase de deformação varisca (F2) actuou na parte nordeste da área estudada e é caracterizada por ter gerado dobras de comprimento de onda quilométrico, com planos axiais e xistosidade associada S2 de direcção NW-SE, subverticais ou a pender fortemente para NE. Embora com alguma dispersão, as lineações de intersecção L2 e os eixos das dobras D2 apresentam maioritariamente forte pendor para E. A direcção e tipos de estruturas da F2 sugerem uma correlação com a terceira fase definida em vários pontos da Zona Centro Ibérica e estreitamente relacionada com as intrusões graníticas. Do ponto de vista petrológico, distinguem-se várias rochas sedimentares (pelitos e arenitos) todas elas sujeitas a metamorfismo que não ultrapassa a fácies dos xistos verdes. Dentro das rochas sedimentares mais grosseiras, há a destacar a presença de arenitos vulcânicos cuja composição denuncia, não muito afastados da bacia sedimentar, a presença de aparelhos vulcânicos que estariam em actividade durante a sedimentação. Foram analisadas isotopicamente 27 amostras de metapelitos colhidas em 5 locais diferentes de forma a abranger quase toda a área estudada. Os dados isotópicos de quatro destes locais de amostragem forneceram isócronas Rb-Sr, em rocha total, com valores da ordem dos 400-440 Ma. O granito do Caramulo, datado pela isócrona Rb-Sr em amostras de rocha total, forneceu uma idade de 326±12Ma. As idades modelo Sm-Nd (manto empobrecido) de 5 amostras de metapelitos estão compreendidas entre 1.35 e 1.25 Ga. Este período de tempo pode ser considerado como correspondendo à época de diferenciação mantélica da crusta que deu lugar à maioria das áreas fonte dos metapelitos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Iberian Variscides several first order arcuate structures have been considered. In spite of being highly studied their characterization, formation mechanisms and even existence is still debatable. Themain Ibero-Armorican Arc (IAA) is essentially defined by a predominantNW–SE trend in the Iberian branch and an E–Wtrend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previousmajor one (IAA). Whatever themodels, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian — Carboniferous polyphasic indentation of a Gondwana promontory. In thismodel the CA is essentially a thin-skinned arc,while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A área de Aguiar da Beira está integrada nos terrenos autóctones da Zona Centro-ibérica e é constituída essencialmente por rochas granitóides variscas instaladas durante e após a terceira fase de deformação (D3). As relações de campo mostram que estes granitóides intruíram formações metassedimentares de idade proterozóica superior-câmbrica e as sequências do Ordovícico e do Carbónico do sinclinal Porto-Sátão, cujo extremo SE aflora na área de estudo. Com base na cartografia publicada e nos dados de campo colhidos no âmbito deste trabalho, foi possível individualizar oito intrusões distintas: o granodiorito -granito biotítico de Sernancelhe, o granito gnaissoso de duas micas, o granito moscovítico-biotítico de Vila Nova de Paiva, o granodiorito-granito biotítico-moscovítico de Lagares e os granitos de Touro (biotítico-moscovítico), Aguiar da Beira (moscovítico-biotítico), Pera Velha / Vila da Ponte (biotítico-moscovítico) e Rei Mouro (moscovítico-biotítico). A presença de encraves microgranulares em cinco dos granitóides estudados sugere que os processos de mistura de magmas desempenharam um papel importante na sua petrogénese. As datações U-Pb obtidas em zircões e monazites durante o presente estudo permitiram subdividir os granitóides de Aguiar da Beira em três grupos, de acordo com as suas relações com a terceira fase de deformação (D3): granitóides sin-tectónicos (Sernancelhe e granito gnaissoso; 322-317 Ma), tardi-tectónicos (Vila Nova de Paiva, Lagares e Touro; 308-306 Ma), e tardi- a pós-tectónicos (Aguiar da Beira, Pera Velha / Vila da Ponte e Rei Mouro; 303297 Ma). As assinaturas geoquímicas de elementos maiores e traço dos granitóides estudados, em conjunto com os dados isotópicos Sr-Nd e δ18 (rocha total e zircão) apontam para uma contribuição significativa de protólitos crustais na génese destes magmas. Á excepção do granito gnaissoso, todos os granitóides possuem um carácter transicional entre os granitos do tipo I e do tipo S, o que apoiado pelos dados de geoquímica de rocha total e isotópica, e pela presença de encraves microgranulares de composição mais máfica presentes em muitos deles, indicia uma forte intervenção de processos de hibridização de líquidos de proveniência distinta (crustais e mantélicos), em diferentes proporções, na sua origem. Pelo contrário, as características geoquímicas e isotópicas do granito gnaissoso revelam claras afinidades com os granitos do tipo S, e sugerem que tenha derivado da anatexia de fontes exclusivamente supracrustais. No entanto, parte da variabilidade geoquímica e isotópica observada em todos os granitóides estudados só poderá ser explicada pela actuação de processos de cristalização fraccionada, especialmente intensos no caso do granito gnaissoso e dos granitos tardi- a PÓS-D3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O complexo batolítico das Beiras está localizado na Zona Centro Ibérica (ZCI), no centro norte de Portugal. É predominantemente composto por rochas granitóides instaladas em metassedimentos de idade Neoproterozóica - Câmbrica Inferior, Ordovícica e Carbonífera Superior, durante ou após a última fase de deformação dúctil varisca (D3). No seu conjunto, as rochas granitóides do Batólito das Beiras cobrem um amplo espectro de idades (sin-, tardi- e tardi-pós-D3) e tipologias (tipo S e transicionais I-S). Neste trabalho apresentam-se dados petrográficos, mineralógicos, geoquímicos e isotópicos para estas intrusões e discutem-se os principais processos envolvidos na sua génese.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U–Pb zircon ages at 399±7 Ma, dating the Variscan emplacement of UAT. In contrast,U–Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500–480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500–480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the VariscanWilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flowregime, possibly related to the Palaeotethys back-arc basin development (ca. 450–420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/ recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400–390 Ma). This geodynamic scenario suggests also that UAT should have been part of Armorica before its emplacement on top of Iberia after Palaeotethys closure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H-kappa stacking algorithm to the PRFs enabled us to estimate the crustal thickness (H) and the average crustal ratio of the P- and S-waves velocities V (p)/V (s) (kappa) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V (p)/V (s) values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V (p)/V (s) is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V (p)/V (s) with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

U–Pb geochronological study of zircons from nodular granites and Qtz-diorites comprising part of Variscan high- grade metamorphic complexes in Gredos massif (Spanish Central System batholith) points out the significant presence of Cambro-Ordovician protoliths among the Variscan migmatitic rocks that host the Late Carboniferous intrusive granitoids. Indeed, the studied zone was affected by two contrasted tectono-magmatic episodes, Car- boniferous (Variscan) and Cambro-Ordovician. Three main characteristics denote a close relation between the Cambro-Ordovician protholiths of the Prado de las Pozas high-grade metamorphic complex, strongly reworked during the Variscan Orogeny, and other Cambro-Ordovician igneous domains in the Central Iberian Zone of the Iberian Massif: (1) geochemical features show the ferrosilicic signature of nodular granites. They plot very close to the average analysis of themetavolcanic rocks of the Ollo de Sapo formation (Iberia). Qtz-diorites present typical calc-alkaline signatures and are geochemically similar to intermediate cordilleran granitoids. (2) Both Qtz-diorite and nodular granite samples yield a significant population of Cambro-Ordovician ages, ranging between 483 and 473 Ma and between 487 and 457 Ma, respectively. Besides, (3) the abundance of zircon inher- itance observed on nodular granites matches the significant component of inheritance reported on Cambro- Ordovician metagranites and metavolcanic rocks of central and NW Iberia. The spatial and temporal coincidence of both peraluminous and intermediate granitoids, and specifically in nodular granites and Qtz-diorite enclaves of the Prado de las Pozas high-grade complex, is conducive to a common petrogenetic context for the formation of both magmatic types. Tectonic and geochemical characteristics describe the activity of a Cambro-Ordovician arc-back-arc tectonic set- ting associated with the subduction of the Iapetus–Tornquist Ocean and the birth of the Rheic Ocean. The exten- sional setting is favorable for the generation, emplacement, and fast rise of subduction-related cold diapirs, supported by the presence of typical calc-alkaline cordilleran granitoids contemporary with ferrosilicic volcanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial con- tinental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to ex- plain the processes in place during the transition froman extension-dominated state (D2) to a compression-dom- inated one (D3).Wereveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facil- itating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intru- sion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel re- gion, the D3 Tamames-Marofa-Sátão synform. Newdating of syn-orogenic granitoids (SHRIMP U\\Pb zircon dat- ing) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331–311 Ma, with maximum tectonomagmatic activity at ca. 321–317 Ma. The capture and apparent cessation of movement of the Pinhel shear zone occurred at ca. 317– 311 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Convergent plate margins typically experience a transition from subduction to collision dynamics as massive continental blocks enter the subduction channel. Studies of high-pressure rocks indicate that tectonic fragments are rapidly exhumed from eclogite facies to midcrustal levels, but the details of such dynamics are controversial.To understand the dynamics of a subduction channel we report the results of a petrochronological study from the central Sesia Zone, a key element of the internalWestern Alps.This comprises two polymetamorphic basement complexes (Eclogitic Micaschist Complex and Gneiss Minuti Complex) and a thin, dismembered cover sequence (Scalaro Unit) associated with pre-Alpine metagabbros and metasediments (Bonze Unit). Structurally controlled samples from three of these units (Eclogitic Micaschist Complex and Scalaro-Bonze Units) yield unequivocal petrological and geochronological evidence of two distinct high-pressure stages. Ages (U-Th-Pb) of growth zones in accessory allanite and zircon, combined with inclusion and textural relationships, can be tied to the multi-stage evolution of single samples.Two independent tectono-metamorphic ‘slices’ showing a coherent metamorphic evolution during a given time interval have been recognized: the Fondo slice (which includes Scalaro and Bonze rocks) and the Druer slice (belonging to the Eclogitic Micaschist Complex).The new data indicate separate stages of deformation at eclogite-facies conditions for each recognized independent kilometer-sized tectono-metamorphic slice, between ~85 and 60 Ma, with evidence of intermittent decompression (∆P~0.5 GPa) within only the Fondo slice. The evolution path of the Druer slice indicates a different P-T-time evolution with prolonged eclogite-facies metamorphism between ~85 and 75Ma. Our approach, combining structural, petrological and geochronological techniques, yields field-based constraints on the duration and rates of dynamics within a subduction channel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the Sesia Zone (Italian Western Alps), slivers of continental crust characterised by an Alpine high-pressure imprint are intermingled with abundant mafic rocks and Mesozoic metasediments. An extensive study of the central Sesia Zone was undertaken to identify and reconstruct the lithological setting of the mono-cyclic sediments of the Scalaro Unit. A new geological map (1:5000) and schematic cross sections across the Scalaro Unit and the adjoining Eclogitic Micaschist Complex are presented here. In order to delimit the size and shape of the mono-metamorphic unit and understand its internal geometry with respect to the poly-metamorphic basement, an integrated approach was used. Linking observations and data across a range of scales, from kilometres in the field down to petrological and chronological data obtained at micrometre scale, we define for the first time the real size and internal geometry of the Scalaro Unit, as well as its large-scale structural context.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600–1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of the Upper Jurassic-Lower Cretaceous deposits (Higueruelas, Villar del Arzobispo and Aldea de Cortés Formations) of the South Iberian Basin (NW Valencia, Spain) reveals new stratigraphic and sedimentological data, which have significant implications on the stratigraphic framework, depositional environments and age of these units. The Higueruelas Fm was deposited in a mid-inner carbonate platform where oncolitic bars migrated by the action of storms and where oncoid production progressively decreased towards the uppermost part of the unit. The overlying Villar del Arzobispo Fm has been traditionally interpreted as an inner platform-lagoon evolving into a tidal-flat. Here it is interpreted as an inner-carbonate platform affected by storms, where oolitic shoals protected a lagoon, which had siliciclastic inputs from the continent. The Aldea de Cortés Fm has been previously interpreted as a lagoon surrounded by tidal-flats and fluvial-deltaic plains. Here it is reinterpreted as a coastal wetland where siliciclastic muddy deposits interacted with shallow fresh to marine water bodies, aeolian dunes and continental siliciclastic inputs. The contact between the Higueruelas and Villar del Arzobispo Fms, classically defined as gradual, is also interpreted here as rapid. More importantly, the contact between the Villar del Arzobispo and Aldea de Cortés Fms, previously considered as unconformable, is here interpreted as gradual. The presence of Alveosepta in the Villar del Arzobispo Fm suggests that at least part of this unit is Kimmeridgian, unlike the previously assigned Late Tithonian-Middle Berriasian age. Consequently, the underlying Higueruelas Fm, previously considered Tithonian, should not be younger than Kimmeridgian. Accordingly, sedimentation of the Aldea de Cortés Fm, previously considered Valangian-Hauterivian, probably started during the Tithonian and it may be considered part of the regressive trend of the Late Jurassic-Early Cretaceous cycle. This is consistent with the dinosaur faunas, typically Jurassic, described in the Villar del Arzobispo and Aldea de Cortés Fms.