978 resultados para Catalase peroxidase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Caulobacter crescentus rho:Tn5 mutant strain presenting a partially functional transcription termination factor Rho is highly sensitive to hydrogen peroxide in both exponential and stationary phases. The mutant was shown to be permanently under oxidative stress, based on fluorophore oxidation, and also to be sensitive to tert-butyl hydroperoxide and paraquat. However, the results showed that the activities of superoxide dismutases CuZnSOD and FeSOD and the alkylhydroperoxide reductase ahpC mRNA levels in the rho mutant were comparable to the wild-type control in the exponential and stationary phases. In contrast, the KatG catalase activity of the rho mutant strain was drastically decreased and did not show the expected increase in the stationary phase compared with the exponential phase. Transcription of the katG gene was increased in the rho mutant and the levels of the immunoreactive KatG protein do not differ considerably compared with the wild type in the stationary phase, suggesting that KatG activity is affected in a translational or a post-translational step.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the effect of laser irradiation on the amylase and the antioxidant enzyme activities, as well as on the total protein concentration of submandibular glands (SMG) of diabetic and non-diabetic rats. Background: Laser has been used aiming to improve some biochemical alterations observed in salivary glands of streptozotocin-induced diabetic rats. Materials and Methods: Ninety-six female rats were divided into eight groups: D0, D5, D10, and D20 (diabetic animals), and C0, C5, C10, and C20 (non-diabetic animals), respectively. Diabetes was induced by administering streptozotocin and confirmed later by the glycemia results. Twenty-nine days after diabetes induction, the SMG of groups D5 and C5, D10 and C10, and D20 and C20 were irradiated with 5, 10, and 20 J/cm(2), respectively. A diode laser (660nm/100mW) was used. On the day after irradiation, the rats were euthanized and the SMG were removed. Catalase, peroxidase, and amylase activities, as well as protein concentration, were assayed. Results: Diabetic rats without irradiation (D0) showed higher catalase activity (p<0.05) when compared to C0 (0.16 +/- 0.05 and 0.07 +/- 0.01 U/mg protein, respectively). However, laser irradiation of 5, 10, and 20 J/cm(2) reduced the catalase activity of diabetic groups (D5 and D20) to non-diabetic values (p>0.05). Conclusion: Based on the results of this study, laser irradiation decreased catalase activity in diabetic rats' SMG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar os perfis proteicos e o desempenho fisiológico de sementes de café submetidas a diferentes métodos de processamento e secagem. Foram avaliados os processamentos por via seca e úmida, e as secagens natural, em terreiro, e artificial a 60ºC, ou a 60ºC até 30% de umidade e 40ºC até teor final de 11% (base úmida). Após serem processadas e secadas, as sementes foram avaliadas quanto ao desempenho fisiológico e submetidas a análises bioquímicas, por meio da eletroforese de proteínas resistentes ao calor LEA ("late embryogenesis abundant") e das enzimas superóxido dismutase, catalase, peroxidase, esterase, polifenoloxidase, isocitrato desidrogenase, álcool desidrogenase e malato desidrogenase. O perfil proteico de sementes de café é afetado pelo método de processamento e de secagem. Os cafés processados por via úmida apresentam maior tolerância à secagem - revelada pela maior atividade de enzimas antioxidativas e pelo melhor desempenho fisiológico - do que os processados por via seca. A atividade de proteínas resistentes ao calor e de enzimas antioxidantes é variável promissora para diferenciar a qualidade dos cafés submetidos a diferentes manejos pós-colheita.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o efeito dos eliciadores acibenzolar‑S‑metílico (ASM) e proteína harpina, aplicados em pós‑colheita, na indução de resistência sistêmica à podridão‑amarga em maçãs. Realizaram-se ferimentos mecânicos em maçãs 'Royal Gala' seguidos da aplicação dos eliciadores. Doze horas depois, procedeu-se à inoculação do fungo Colletotrichum gloeosporioides. Após 72 horas, realizaram-se as avaliações quanto à área lesionada e ao número de esporos, bem como a coleta de tecido dos frutos para quantificação de proteínas, açúcares totais e redutores, fenóis totais, e para determinação da atividade das enzimas fenilalanina amônia‑liase, superóxido dismutase, catalase, peroxidase e ascorbato peroxidase. A harpina e, em menor grau, o ASM proporcionaram aumento da atividade da enzima peroxidase e a consequente redução da área lesionada e da esporulação de C. gloeosporioides nas maçãs. Esses eliciadores podem ser utilizados como ferramenta de controle no manejo integrado da podridão‑amarga, em pós‑colheita de maçãs 'Royal Gala'.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em regiões tropicais, com ajuda da aplicação de produtos químicos para induzir a quebra de dormência, é possível obter duas safras anuais de videira. No entanto, a eficácia da utilização destes produtos é questionável, pois sua alta toxicidade é um fator preocupante. Neste sentido, o objetivo do trabalho foi avaliar o efeito da aplicação do hidrolato obtido de pau-d'alho (Gallesia integrifolia) na brotação, produtividade e atividade das enzimas peroxidase e catalase em videiras cv. Benitaka. O experimento foi conduzido em vinhedo comercial no município de Marialva, Estado do Paraná, Brasil, em dois ciclos consecutivos: 2011, de agosto a dezembro, e 2012, de janeiro a julho. Os tratamentos consistiram nas seguintes doses de hidrolato de pau-d'alho: 0; 50; 100; 150 e 200 mL L-1, além da testemunha positiva com cianamida hidrogenada a 20 mL L-1. Foram avaliadas as variáveis: porcentagem de gemas brotadas, número de cachos, peso dos cachos, produtividade (t ha-1), atividade das enzimas catalase e peroxidase, e teor de açúcares redutores nas gemas. Na porcentagem de gemas brotadas, houve efeito quadrático em função das doses do hidrolato de pau-d'alho com máxima brotação estimada para as doses de 108,8 e 97 mL L-1 de hidrolato de pau-d'alho para o primeiro e segundo ciclos, respectivamente, com resultados semelhantes ao tratamento-padrão com cianamida hidrogenada. Os tratamentos com hidrolato de pau-d'alho também incrementaram o número e o peso dos cachos e a produtividade, apresentando também efeito quadrático em função das doses. Verificou-se, ainda, redução da atividade das enzimas catalase, peroxidase e para os teores de açúcares redutores nas gemas para as plantas tratadas com hidrolato de pau-d'alho, evidenciando seu modo de ação via injúrias oxidativas, similarmente ao efeito do tratamento convencional com cianamida hidrogenada. Com base nos resultados obtidos, o hidrolato de pau-d'alho, nas doses entre 100 e 150 mL L-1, pode ser uma alternativa para a quebra de dormência de videiras cv. Benitaka em regiões tropicais para a viticultura sustentável.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The toxic action of aqueous wheat (Triticum aestivum) straw extracts was investigated on germination, early seedling growth, some biochemical attributes and the antioxidant enzymes of horse purslane (Trianthemaportulacastrum). Aqueous extracts of wheat straw were prepared by soaking the wheat straw in distilled water in 1:10 w/v ratio and diluted to obtain the concentrations of 0, 25, 50, 75 and 100%. These were used as pre and post emergence in laboratory and screen house trials. Wheat aqueous extracts exhibited phytotoxicity to horse purslane by inhibiting and delaying its germination and suppressing seedling growth. Wheat phytotoxins in its aqueous extracts suppressed the chlorophyll content and soluble protein, and enhanced soluble phenolics and the activity of antioxidant enzymes as catalase, peroxidase and superoxide dismutase in the seedlings of horse purslane compared with the control. Such inhibitory activity is believed to originate from exposure to wheat phytotoxins that are present in its aqueous straw extract. The suppressive effects of wheat straw need to be investigated further under field conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalase is the enzyme which decomposes hydrogen peroxide to water and oxygen. Escherichia coli contains two catalases. Hydroperoxidase I (HPI) is a bifunctional catalase-peroxidase. Hydroperoxidase II (HPII) is only catalytically active toward H202. Expression of the genes encoding these proteins is controlled by different regimes. HPJI is thought to be a hexamer, having one heme d cis group per enzymatic subunit. HPII wild type protein and heme containing mutant proteins were obtained from the laboratory of P. Loewen (Univ. of Manitoba). Mutants constructed by oligonucleotidedirected mutagenesis were targeted for replacement of either the His128 residue or the Asn201 residue in the vicinity of the HPII heme crevice. His128 is the residue thought to be analogous to the His74 distal axial ligand of the heme in the bovine liver enzyme, and Asn201 is believed to be a residue critical to the function of the enzyme because of its role in orienting and interacting with the substrate molecule. Investigation of the nature of the hemes via absorption spectroscopy of the unmodified catalase proteins and their derived pyridine hemochromes showed that while the bovine and Saccharomyces cerevisiae catalase enzymes are protoheme-containing, the HPII wild type protein contains heme d, and the mutant proteins contain either solely protoheme, or heme d-protoheme mixtures. Cyanide binding studies supported this, as ligand binding was monophasic for the bovine, Saccharomyces cerevisiae, and wild type HPII enzymes, but biphasic for several of the HPII mutant proteins. Several mammalian catalases, and at least two prokaryotic catalases, are known to be NADPH binding. The function of this cofactor appears to be the prevention of inactivation of the enzyme, which occurs via formation of the inactive secondary catalase peroxide compound (compound II). No physiologically plausible scheme has yet been proposed for the NADPH mediation of catalase activity. This study has shown, via fluorescence and affinity chromatography techniques, that NADPH binds to the T (Typical) and A (Atypical) catalases of Saccharomyces cerevisiae, and that wild type HPII apparently does not bind NADPH. This study has also shown that NADPH is unlike any other hydrogen donor to catalase, and addresses its features as a unique donor by proposing a mechanism whereby NADPH is oxidized and catalase is protected from inactivation via the formation of protein radical species. Migration of this radical to a position close to the NADPH is also proposed as an adjunct hypothesis, based on similar electron migrations that are known to occur within metmyoglobin and cytochrome c peroxidase when reacted with H202. Validation of these hypotheses may be obtained in appropriate future experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. beta-Galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering the worldwide consumption of coffee, it is natural that throughout the history many people have dedicated the research to markers that contribute somehow on gauging its quality. This research aimed to evaluate the biochemical performance of arabica coffee during storage. Coffee in beans (natural) and in parchment (pulped) dried in concrete terrace and in dryer with heated air were packed in jute bags and stored in not controlled environmental conditions. Enzymatic activities of superoxide dismutase, catalase, peroxidase, polyphenoloxidase, esterase and lipoxygenase in coffee grains were evaluated at zero, three, six, nine and twelve months by means of electrophoresis. Independently of the drying method, the activity of isoenzymatic complexes highlighted deteriorative processes in stored grains of coffee. The treatments 60/40º C and 60º C used to reduce the water content imposed a greater stress condition, accelerated metabolism of natural coffee in the storage with decreased activity of defense mechanisms due to latent damage in these grains. Natural coffees are more sensible to high drying temperatures and its quality reduces faster than pulped coffee in the storage.