876 resultados para Calcium deposition


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La polykystose rénale autosomique dominante (PKRAD) est la maladie génétique rénale la plus commune touchant 1/500 personnes. Elle se caractérise principalement par la formation de kystes rénaux dans tous les segments du néphron, entraînant l’insuffisance rénale, et par des manifestations extrarénales kystiques (foie, pancréas, rate) et non-kystiques (anomalies cardiaques, vasculaires et cérébrales). Deux gènes, PKD1 et PKD2, sont responsables de 85 et 15% des cas respectivement. Ces gènes encodent les polycystine-1 (PC-1) et -2 (PC-2) qui forment un complexe à la membrane plasmique et ciliaire des cellules épithéliales rénales. PC-1 est une protéine transmembranaire de 4302 acides aminés possédant un court domaine intracellulaire incluant un motif coiled-coil impliqué dans l’interaction entre PC-1 et PC-2 in-vitro. L’importance du coiled-coil est démontrée par des mutations affectant spécifiquement ce motif chez des patients PKRAD. Le mécanisme pathogénétique responsable de la PKRAD est indéterminé. Chez la souris, la PKRAD se développe suite à l’ablation (Pkd1-/-) ou lors de la surexpression (SBPkd1TAG) de Pkd1, ce qui suggère un effet de dosage. Des anomalies ciliaires sont aussi souvent associées à PKRAD. Mon objectif était de déterminer in-vivo le mécanisme pathogénétique de la polycystine-1 dans le développement des symptômes PKRAD rénaux et extrarénaux et plus spécifiquement, le rôle du motif coiled-coil dans le mécanisme de kystogenèse. Pour ce faire, nous avons généré deux constructions, Pkd1 sauvage (Pkd1TAG) et Pkd1 tronquée de son motif coiled-coil (Pkd1ΔCoiled-coil), par recombinaison homologue à partir du BAC-Pkd1 sauvage comprenant la séquence murine entière de Pkd1. Trois lignées de souris Pkd1TAG générées par microinjection démontrent un niveau d’expression de Pkd1 qui corrèle avec le nombre de copie du transgène (2, 5 et 15 copies). Les souris Pkd1TAG reproduisent la PKRAD en développant des kystes rénaux dans toutes les parties du néphron et des cils primaires plus longs que les contrôles non transgéniques. Les analyses physiologiques supportent que les souris Pkd1TAG développent une insuffisance rénale et démontrent une augmentation du volume urinaire de même qu’une diminution de l’osmolalité, de la créatinine et des protéines urinaires. De plus, les souris Pkd1TAG développent des kystes hépatiques, des anomalies cardiaques associées à des dépôts de calcium et des anévrismes cérébraux. La sévérité du phénotype augmente avec l’expression de Pkd1 appuyant l’hypothèse d’un mécanisme de dosage. Nous avons aussi déterminé que l’expression du transgène Pkd1TAG complémente le phénotype létal-embryonnaire des souris Pkd1-/-. D’autre part, nous avons générés 4 lignées de souris Pkd1ΔCoiled-coil (2 et 15 copies du transgène) dont le nombre de copies corrèle avec le niveau d’expression du transgène. Ces souris Pkd1ΔCoiled-coil, contrairement aux Pkd1TAG de même âge, ne développent pas de kystes et possèdent des cils primaires de longueur normale. Afin d’évaluer le rôle du motif coiled-coil en absence de polycystine-1 endogène, nous avons croisé les souris Pkd1ΔCoiled-coil avec les souris Pkd1-/-. Contrairement aux souris Pkd1-/- qui meurent in-utéro, les souris Pkd1ΔCoiled-coil; Pkd1-/- survivent ~10 à 14 jours après la naissance. Elles démontrent des kystes rénaux et pancréatiques sévères, un retard de croissance et des anomalies pulmonaires. Tous les segments du néphron sont affectés. Mon projet démontre que la surexpression de Pkd1 est un mécanisme pathogénique de la PKRAD tant au niveau rénal qu’extrarénal. De plus, il démontre que le motif coiled-coil est un élément déterminant dans la kystogenèse/PKRAD in-vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le cartilage est un tissu conjonctif composé d’une seule sorte de cellule nommée chondrocytes. Ce tissu offre une fondation pour la formation des os. Les os longs se développent par l'ossification endochondral. Ce processus implique la coordination entre la prolifération, la différenciation et l'apoptose des chondrocytes, et résulte au remplacement du cartilage par l'os. Des anomalies au niveau du squelette et des défauts liés à l’âge tels que l’arthrose (OA) apparaissent lorsqu’il y a une perturbation dans l’équilibre du processus de développement. À ce jour, les mécanismes exacts contrôlant la fonction et le comportement des chondrocytes pendant la croissance et le développement du cartilage sont inconnus. Le récepteur activateur de la prolifération des peroxysomes (PPAR) gamma est un facteur de transcription impliqué dans l'homéostasie des lipides. Plus récemment, son implication a aussi été suggérée dans l'homéostasie osseuse. Cependant, le rôle de PPARγ in vivo dans la croissance et le développement du cartilage est inconnu. Donc, pour la première fois, cette étude examine le rôle spécifique de PPARγ in vivo dans la croissance et le développement du cartilage. Les souris utilisées pour l’étude avaient une délétion conditionnelle au cartilage du gène PPARγ. Ces dernières ont été générées en employant le système LoxP/Cre. Les analyses des souris ayant une délétion au PPARγ aux stades embryonnaire et adulte démontrent une réduction de la croissance des os longs, une diminution des dépôts de calcium dans l’os, de la densité osseuse et de la vascularisation, un délai dans l’ossification primaire et secondaire, une diminution cellulaire, une perte d’organisation colonnaire et une diminution des zones hypertrophiques, une désorganisation des plaques de croissance et des chondrocytes déformés. De plus, la prolifération et la différenciation des chondrocytes sont anormales. Les chondrocytes et les explants isolés du cartilage mutant démontrent une expression réduite du facteur de croissance endothélial vasculaire (VEGF)-A et des éléments de production de la matrice extracellulaire. Une augmentation de l’expression de la métalloprotéinase matricielle (MMP)-13 est aussi observée. Dans les souris âgées ayant une délétion au PPARγ, y est aussi noté des phénotypes qui ressemblent à ceux de l’OA tel que la dégradation du cartilage et l'inflammation de la membrane synoviale, ainsi qu’une augmentation de l’expression de MMP-13 et des néoépitopes générés par les MMPs. Nos résultats démontrent que le PPARγ est nécessaire pour le développement et l’homéostasie du squelette. PPARγ est un régulateur essentiel pour la physiologie du cartilage durant les stades de croissance, de développement et de vieillissement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm), human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineralization of the articular cartilage is a pathological condition associated with age and certain joint diseases in humans and other mammals. In this work, we describe a physiological process of articular cartilage mineralization in bullfrogs. Articular cartilage of the proximal and distal ends of the femur and of the proximal end of the tibia-fibula was studied in animals of different ages. Mineralization of the articular cartilage was detected in animals at 1 month post-transformation. This mineralization, which appeared before the hypertrophic cartilage showed any calcium deposition, began at a restricted site in the lateral expansion of the cartilage and then progressed to other areas of the epiphyseal cartilage. Mineralized structures were identified by von Kossa's staining and by in vivo incorporation of calcein green. Element analysis showed that calcium crystals consisted of poorly crystalline hydroxyapatite. Mineralized matrix was initially spherical structures that generally coalesced after a certain size to occupy larger areas of the cartilage. Alkaline phosphatase activity was detected at the plasma membrane of nearby chondrocytes and in extracellular matrix. Apoptosis was detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) reaction in some articular chondrocytes from mineralized areas. The area occupied by calcium crystals increased significantly in older animals, especially in areas under compression. Ultrastructural analyses showed clusters of needle-like crystals in the extracellular matrix around the chondrocytes and large blocks of mineralized matrix. In 4-year-old animals, some lamellar bone (containing bone marrow) occurred in the same area as articular cartilage mineralization. These results show that the articular cartilage of R. catesbeiana undergoes precocious and progressive mineralization that is apparently stimulated by compressive forces. We suggest that this mineralization is involved in the closure of bone extremities, since mineralization appears to precede the formation of a rudimentary secondary center of ossification in older animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: This study intends to evaluate BMP (Bone Morphogenetic Protein) implant and BMP implant plus PRP (Platelet Rich Plasma) in rabbit orbital fractures, searching for tissue reaction, by radiological and morfometrical analysis. Methods:Third six white rabbits were submitted to orbital floor fracture and distributed in three groups: G1, with rabbits receiving a plate containing decalcified bone matrix and BMP; G2, with rabbits receiving the implant with BMP wrapped by PRP; G3, the control group where it was made the fracture only. The animals were evaluated radiologically after surgery and at sacrifice time in 7, 30, 90 and 180th day after surgery. After sacrifice, a block containing the right orbital tissue was extracted and prepared to morphological and morphometrical analysis. Results: An intensive linfomononuclear inflammatory reaction was observed at 7th day in G1 e G2, witch decreased after the 30th day; mesenchimal cells, osteoblasts, new bone and progressive cavitation of the implant were also observed, besides signs of calcium deposition by radiological study. In the control group fibrosis at the site of fracture was identified only. Conclusion: BMP seemed a good orbital implant producing new bone at the implant site and correcting bone defect.There was not observed acceleration of osteoinduction when the implant was associated with PRP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate a bone morphogenetic protein (BMP) implant with and without platelet-rich plasma (PRP), which is supposed to accelerate fracture consolidation in the orbit fracture treatment. Methods: Thirty-six white rabbits were subjected to orbital fracture and treated in three groups: BMP implant fracture repair (G1), BMP plus PRP implant fracture repair (G2), and fracture and spontaneous repair (G3). The animals were sacrificed at 7, 30, 90, and 180 days after surgery. A radiology evaluation was carried out on the 7th day after the fracture and at the sacrifice moments. After the animals' death, the orbital content material was removed and prepared for morphological and morphometric analysis. Results: Radiology suggested intramembranous and progressive cavitation and ossification without a reduction in implant size and with signs of calcium deposition; these events were confirmed by histological analysis, which showed a lymphomononuclear inflammatory reaction in G1 and G2, more intense 7 days after surgery and reducing after 30 days. Associating PRP with BMP did not accelerate bone induction. Conclusion: BMP implant promotes bone induction, integration at fracture site, scarce inflammatory reaction, and may be a good alternative in orbit fracture reconstruction. The addition of PRP to the BMP plate did not accelerate the resolution, and its use is not necessary. Copyright © Informa Healthcare USA, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The suspension of rats by the tail model is used to investigate the behavior of bone in animals unable to move around. Bone is an adaptative tissue that develops in structure and function, among other factors, in response to mechanical forces applied to it and metabolic demands that it will suffer. The absence of mechanical forces and deformation of bone that occurs causes a decrease in calcium deposition in the absence of stimuli on osteoblasts and osteocytes, favoring the action of osteoclasts, making bones weak and brittle. Therefore, the mechanical action is necessary to stimulate local bone response and thus provide growth and remodeling. The aim of this study was to evaluable by radiographic densitometry, the tail suspension for 15 and 36 days alter the bone mineral density of cervical vertebrae (C3), thoracic (T6) and lumbar (L1 and L3) of Wistar rats. Thirty Rattus norvegicus albinus, adult, male, Wistar strain, average body mass ± 350g, were divided into 3 groups: control (n = 10) - not suspended; S15 (n = 10) - suspended for 15 days and S36 (n = 10) - suspended for 36 days. For densitometric analysis vertebrae were radiographed, scanned, digitized and analyzed by the computer program ImageJ®. There was a statistically significant increase in bone mineral density in group S15, probably by the restlessness of the animals to the suspension, with a decrease in group S36, and this hypothetically is linked to the accommodation of the rats, concluding that the tail suspension altered bone mineral density in first time with a decrease over time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'insufficienza renale cronica (CKD) è associata ad un rischio cardiovascolare più elevato rispetto alla popolazione generale: fattori come uremia, stress ossidativo, età dialitica, infiammazione, alterazioni del metabolismo minerale e presenza di calcificazioni vascolari incidono fortemente sulla morbosità e mortalità per cause cardiovascolari nel paziente uremico. Diversi studi hanno verificato il coinvolgimento dei progenitori endoteliali (EPC) nella malattia aterosclerotica ed è stato dimostrato che esprimono osteocalcina, marcatore di calcificazione. Inoltre, nella CKD è presente una disfunzione in numero e funzionalità delle EPC. Attualmente, il ruolo delle EPC nella formazione delle calcificazioni vascolari nei pazienti in dialisi non è stato ancora chiarito. Lo scopo della tesi è quello di studiare le EPC prelevate da pazienti con CKD, al fine di determinarne numero e fenotipo. È stato anche valutato l'effetto del trattamento in vitro e in vivo con calcitriolo e paracalcitolo sulle EPC, dato il deficit di vitamina D dei pazienti con CKD: il trattamento con vitamina D sembra avere effetti positivi sul sistema cardiovascolare. Sono stati valutati: numero di EPC circolanti e la relativa espressione di osteocalcina e del recettore della vitamina D; morfologia e fenotipo EPC in vitro; effetti di calcitriolo e paracalcitolo sull’espressione di osteocalcina e sui depositi di calcio. I risultati dello studio suggeriscono che il trattamento con vitamina D abbia un effetto positivo sulle EPC, aumentando il numero di EPC circolanti e normalizzandone la morfologia. Sia calcitriolo che paracalcitolo sono in grado di ridurre notevolmente l’espressione di OC, mentre solo il paracalcitolo ha un effetto significativo sulla riduzione dei depositi di calcio in coltura. In conclusione, il trattamento con vitamina D sembra ridurre il potenziale calcifico delle EPC nell’uremia, aprendo nuove strade per la gestione del rischio cardiovascolare nei pazienti affetti da CKD.