999 resultados para CaCO3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of CaCO3 on the crystallization behavior of polypropylene (PP) were studied by means of DSC and WAXD. The average sizes of the CaCO3 powders used were 0.1 mum (UC) and 0.5 mum (GC), respectively. The PP/CaCO3 composites at compositions of 1 phr and 10 phr were investigated. The results showed that the addition of CaCO3 reduced the supercooling, the rate of nucleation and the overall rate of crystallization (except for the 10 phr UC/PP sample). The crystallinity of PP was increased and the size distribution of the crystallites of alpha -PP; was: broadened. On the other hand,the crystallization rate of 10 phr UC/PP is 1.5 times higher than that of neat PP. It has an overall rate of crystallization 2 times as much as that of the neat PP and has the maximum crystallinity. The sizes of crystallites and the unit cell parameters of alpha -PP were varied by the addition of CaCO3. beta -PP was formed by addition of Ge and was not detected by addition of UC. The differences of crystallization behaviors of PP might be attributed to the combined effects of the content and size of CaCO3 filled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface modification of precipitated calcium carbonate particles (calcite) in a planetary ball mill using stearic acid as a modification agent for making dispersion in hydrocarbon oil was investigated. Different parameters for processing (milling) such as milling time, ball-to-sample ratio, and molar ratio of the reactant were varied and analyzed for optimization. The physical properties of the hydrophobically modified calcium carbonate particles were measured; the particle size and morphology of the resulting samples were characterized by transmission electron microscopy and X-ray diffraction. The surface coating thickness was estimated using small angle X-ray scattering. © 2014 American Coatings Association & Oil and Colour Chemists' Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of new materials, involving composites and blends, has been reaching the most varied fields of science, as much of the scientific as technological point of view. This is due to the man's needs in applications, especially in medicine areas. Thus, this work shows the preparation and characterization of poly(vinylidene fluoride) (PVDF) and calcium carbonate (CaCO3) Composite films in order to analyse the incorporation of CaCO3 in PVDF for future application in bony restoration and bony filling. The films were prepared by casting method, where the PVDF pellet shape was dissolved in dimethylacetamide (DMA) and in a separate container CaCO3/DMA emulsion was also made. Soon afterwards they were mixed in several proportions 100/00, 95/05, 85/15, 70/30 in weight and left to dry in greenhouse. Homogeneous and flexible films were obtained and structurally characterized by attenuated total reflection infrared spectroscopy (FT-IR/ATR), thermal analyses (DSC, TGA), X-ray diffractometry, optical and scanning electron microscopies. The results showed that the material was a composite with good thermal stability until around 400 degrees C, the crystallinity of PVDF was non-polar alpha-phase and the obtained films were porous, being these filled with CaCO3. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of calcium titanate, CaTiO3, was performed by mechanical activation and thermal treatment. Milling for up to 360 minutes in a planetary ball mill mechanically activated an equimolar mixture of CaCO 3 and TiO2 powders. A small amount of mechanically activated mixtures was pressed into briquettes and calcined at 850°C for two hours. The effect of mechanical activation on the solid-state reaction was studied using X-ray powder diffraction and differential thermal analysis. The change of morphology and size of powder particles due to milling, were determined by SEM, while BET analysis was used to determine the specific surface area of the powder. The sintering process was followed by a dilatometer during thermal treatment up to 1300°C. The main conclusion of the analysis of conducted investigations is that CaTiO3 ceramics can be obtained from an activated mixture at a much lower temperature than reported in the literature owing to acceleration of the chemical reaction and sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2 degrees N - 27 degrees S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16 degrees 50' - 19 degrees 45'S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km(2). Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m(-2) yr(-1), with a total production rate of 0.025 Gt yr(-1), comparable to those of the world's largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.

Relevância:

20.00% 20.00%

Publicador: