961 resultados para CYTOPLASMIC MATURATION
Resumo:
Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
The 3-isobutyl-1-methylxanthine (IBMX) is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte, and roscovitine, a purine known to specifically inhibit MPF kinase activity, maintains bovine oocytes at the germinal vesicle (GV) stage. The present study was conducted to analyze whether cytoplasmic maturation (examined by the pattern of cortical granule (CG) distribution) of bovine oocytes is improved during meiotic arrest with IBMX and roscovitine. Oocytes were matured in vitro in a 10% Knockout(SR) supplemented TCM-199 medium (Control) with either 0.5 mM IBMX or 25 mu M roscovitine (ROSC). Oocytes were stained with fluorescein isothiocyanate conjugated Lens culinaris agglutinin (FITC-LCA) for CG evaluation and with Hoechst 33342 for nuclear stage assessment. At 16 h of culture, the percentage of oocytes remaining in the GV stage was higher (P < 0.05) in the ROSC group (32.41%) compared with the Control and IBMX groups (8.61% and 9.73%, respectively). At 24h of culture, progression of meiosis to M II stage was retarded (P < 0.05) in the ROSC group (24.05%) compared to the Control (60.20%), whereas the IBMX group (33.88%) showed no significant difference to the other two groups. At 16h of maturation, the proportion of oocytes with CG in clusters (immature cytoplasm) was similar between the groups, as was the percentage of peripheral CG (mature) at 24h of maturation. The results of the present study demonstrated that the meiotic inhibitors IBMX and roscovitine delay the progression of nuclear maturation without affecting cytoplasmic maturation, assessed by the analysis of CG repositioning. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: The oocyte ability to undergo successful fertilization, cleavage and embryonic development depends on meiotic maturation and developmental competence acquisition. In vitro maturation (IVM) protocols currently use eCG, hCG or a combination of both, the effect of these gonadotrophins during IVM and subsequent embryonic development is still controversial. Several media have been used for IVM of porcine oocytes: TCM199, Whitten's and NCSU23 have also been shown to support pig oocyte IVM. This study was designed to determine the effect of hormonal supplementation period and maturation media during in vitro maturation of pig oocytes (1) and subsequent embryonic development (2). Materials, Methods & Results: Oocytes with intact cumulus oophurus layers and homogeneous cytoplasm were collected from prebubertal gilts. IVM was subjected in NCSU23, TCM199 or Whitten's media supplemented with 10 IU/mL eCG and 10 IU/mL hCG for the first 24 or 48 h of IVM. In each replicate the oocytes were fixed every 4 h from 32 to 48 h IVM or the past 48 h after IVM, oocytes were fertilized in vitro in mTBM medium for six hours and cultured in NCSU23 medium for nine days. Cleavage, blastocyst and hatching rates were evaluated at 48 h (day 2), 168 h (day 7) and 216 h (day 9), respectively. The addition of eCG and hCG during the first 24 h IVM increased the proportion of oocytes that reached MII stage at 44 h of maturation in NCSU23 medium. This effect was also observed in Whitten medium at 44 and 48 h (P < 0.05). However, it was not observed in the TCM199 medium. No effect of maturation medium on oocyte nuclear maturation (P > 0.05) was observed in oocytes matured in the presence of eCG and hCG during the first 24 h IVM or during 48 h IVM. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation in Whitten media for 24 h. Higher indexes were obtained at 44 and 48 h. When NCSU23 media was used, no difference after 36 h of maturation was observed. The same result was observed in TCM199. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation for 48 h in Whitten media. Higher indexes were obtained in 36 and 40 h. When NCSU23 or TCM199 were used, no difference was observed. No effect of IVM media on the percentage of fertilized oocytes and polyspermic oocytes or number of spermatozoa per fertilized oocytes was observed. Also, no effect of IVM media on cleavage and blastocyst rates was seen. However, the proportion of hatched blastocysts was lower in NCSU23 compared to Whitten or TCM199. Discussion: Similar results were reported by Marques et al. [13], that it no differences between hormonal supplementation for 22 or 44 h were observed. Therefore, more studies are needed to elucidate the role of these hormones in nuclear in vitro maturation in pig oocytes. In conclusion, no effect of maturation media on meiotic progression was observed. However, the proportion of oocytes that reached metaphase II (MII) stage was higher when eCG + hCG were added for 24 h than 48 h mainly at the 44 h of maturation. In addition, no differences were observed in cleavage and blastocyst rates of the cultured embryos. However, embryos cultured in NCSU23 showed lower rates of hatching compared to other media. These results indicated no effect of maturation media on the fertilization and embryonic development even in the presence of cysteine, PFF and EGF, except for hatched embryos that these rates were lower in NCSU23.
Resumo:
Mesenchymal stem cells (MSCs) secrete a variety of cytokines and growth factors in addition to self-renewal and multiple forms of differentiation. Some of these secreted bioactive factors could improve meiotic maturation in vitro and subsequent embryo developmental potential. The aim of the present study was to determine whether in vitro maturation (IVM) of mouse oocyte with or without cumulus cells could be improved by contact with conditioned medium (CM) of MSCs as well as the efficiency of CM to support follicular growth and oocyte maturation in the ovarian organ of mice cultured on soft agar. The developmental potential of matured oocyte was assessed by blastocyst formation after in vitro fertilization (IVF). Germinal vesicle stage oocytes with or without cumulus cells were subjected to IVM in either CM, Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM) or human tubal fluid (HTF). Approximately 120 oocytes were studied for each medium. CM produced a higher maturation rate (91.2%) than DMEM (54.7%), α-MEM (63.5%) and HTF (27.1%). Moreover, CM improved embryo development to blastocyst stage significantly more than DMEM and HTF (85 vs 7% and 41.7%, respectively) but there was no significant difference compared with α-MEM (85 vs 80.3%). The behavior of cortical granules of IVM oocytes cultured in CM revealed cytoplasmic maturation. Moreover, CM also supported preantral follicles growth well in organotypic culture on soft agar resulting in the maturation of 60% of them to developmentally competent oocytes. The production of estrogen progressively increased approximately 1-fold every other day during organ culture, while a dramatic 10-fold increase in progesterone was observed 17 h after human chorionic gonadotropin stimulus at the end of culture. Thus, CM is an effective medium for preantral follicle growth, oocyte maturation, and sequential embryo development.
Resumo:
Objectives: Asynchrony between nuclear and cytoplasmic maturation, and possibly damage to the oocyte meiotic spindle, limits the application of in vitro maturation (IVM) in assisted reproduction. Several studies have suggested that Prematuration with meiosis blockers may improve oocyte quality after IVM, favoring early embryogenesis. Thus, we investigated the effect of Prematuration with the nuclear maturation inhibitor butyrolactone I (BLI) on the meiotic spindle and chromosomal configuration of bovine oocytes. Study design: Immature oocytes obtained from cows slaughtered in a slaughterhouse (n = 840) were divided into the following groups: (1) control (n = 325), submitted only to IVM in TCM199 for 24 h; (2) BLI 18 h (n = 208) submitted to meiotic blockage with 100 mu M BLI for 24 h (Prematuration) and then induction of IVM in TCM199 for 18 h; and (3) BLI 24 h (n = 307), pre-matured with 100 mu m BLI for 24 h followed by 24 h of IVM in TCM199. The oocytes were then fixed, stained by immunofluorescence for morphological visualization of both microtubules and chromatin, and evaluated. Results: Meiotic arrest occurred in 90.2% of the oocytes cultured with BLI. Maturation rates were similar for all groups (80.3%, 73.6% and 82.7% for the control, BLI 18 h and BLI 24 h groups, respectively). We observed 81.3% normal oocytes in metaphase II in the control group, and 80.0% and 81.2% in the BLI 18 h and BLI 24 h groups, respectively. The incidence of meiotic anomalies did not differ between groups (18.7%, 20.0% and 18.8% for the control, BLI 18 h and BLI 24 h, respectively). Conclusion: Prematuration with butyrolactone I reversibly arrests meiosis without damaging the meiotic spindle or the chromosome distribution of bovine oocytes after in vitro maturation. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: This study evaluated whether there is a relationship between the zona pellucida birefringence (ZP-BF) intensity and the nuclear (NM) and cytoplasmic (CM) in vitro maturation of human oocytes from stimulated cycles.Results: The ZP-BF was evaluated under an inverted microscope with a polarizing optical system and was scored as high/positive (when the ZP image presented a uniform and intense birefringence) or low/negative (when the image presented moderate and heterogeneous birefringence). CM was analyzed by evaluating the distribution of cortical granules (CGs) throughout the ooplasm by immunofluorescence staining. CM was classified as: complete, when CG was localized in the periphery; incomplete, when oocytes presented a cluster of CGs in the center; or in transition, when oocytes had both in clusters throughout cytoplasm and distributed in a layer in the cytoplasm periphery Nuclear maturation: From a total of 83 germinal vesicle (GV) stage oocytes, 58 of oocytes (69.9%) reached NM at the metaphase II stage. From these 58 oocytes matured in vitro, the high/positively scoring ZP-BF was presented in 82.7% of oocytes at the GV stage, in 75.8% of oocytes when at the metaphase I, and in 82.7% when oocytes reached MII. No relationship was observed between NM and ZP-BF positive/negative scores (P = 0.55). These variables had a low Pearson's correlation coefficient (r = 0.081). Cytoplasmic maturation: A total of 85 in vitro-matured MII oocytes were fixed for CM evaluation. Forty-nine oocytes of them (57.6%) showed the complete CM, 30 (61.2%) presented a high/positively scoring ZP-BF and 19 (38.8%) had a low/negatively scoring ZP-BF. From 36 oocytes (42.3%) with incomplete CM, 18 (50%) presented a high/positively scoring ZPBF and 18 (50%) had a low/negatively scoring ZP-BF. No relationship was observed between CM and ZP-BF positive/negative scores (P = 0.42). These variables had a low Pearson's correlation coefficient (r = 0.11).Conclusions: The current study demonstrated an absence of relationship between ZP-BF high/positive or low/negative score and nuclear and cytoplasmic in vitro maturation of oocytes from stimulation cycles.
Resumo:
The current study evaluates the ability of equine oocytes matured in different conditions to undergo nuclear and cytoplasmic maturation.. After oocyte transfer, embryonic development was diagnosed at 1.5 and 90 days of gestation. For each group, immature oocytes obtained from slaughterhouse ovaries were matured in vitro (5 replicates). In experiment I, three different media were tested. HTF:BME, SOFaa, and TCM 199. In experiment 11, the HTF:BME was chosen as maturation medium containing pFSH, eFSH, or eFSH + eGH. Nuclear maturation was estimated after stripping the oocytes and staining with Hoechst 33342. The evaluation of cytoplasmic maturation was performed by transmission electron microscopy. For oocyte transfer, six non-cycling recipient mares were used, and 8 to 15 oocytes were transferred in each mare. In experiment I, the results showed no differences (P > .05) in nuclear maturation (MII) among experimental groups. The percentage of MII was 29.3 ( +/- 9.6), 23.4 ( +/- 8.4), and 13.5 ( +/- 12.4) for HTF:BME, SOF, and TCM, respectively. In experiment II, all media tested were efficient in inducing metaphase II. Also, no statistical differences (P > .05) were observed in percentages of nuclear maturation rates when porcine (37.1 +/- 22.4) or equine (25.8 +/- 8.2) FSH were used, or when eFSH + eGH was added to HTF:BME (29.4 +/- 12.3). The analysis of cytoplasmic morphology of oocytes cultured in TCM 199 and SOFaa showed signs of incomplete cytoplasmic maturation and premature cortical reaction. Meanwhile, oocytes cultured in HTF:BME medium presented cytoplasmic characteristics similar to those described by others for in vivo-matured oocytes. The addition of eFSH to the HTF:BME medium resulted in an improvement of cytoplasmic morphology. After oocyte transfer, two mares became pregnant, one from pFSH group and one from eFSH+eGH group. These results indicate that although in vitro matured equine oocytes are capable of fertilization and embryonic development, the percentage of competent oocytes is still low.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oocyte maturation is a complex process involving nuclear and cytoplasmic maturation. The nuclear maturation is a chromosomal segregation and the cytoplasmic maturation involves the reorganization of the cytoplasmic organelles, mRNA transcription and storage of proteins to be used during fertilization and early embryo development. The mechanism of oocyte maturation in vivo and in vitro still are not totally understood. However it is generally accepted that the second messenger cyclic adenosine monophosphate (cAMP) plays a critical role in the maintenance of meiotic blockage of mammalian oocytes. A relative increase in the level of cAMP within the oocyte is essential for maintaining meiosis block, while a decrease in cAMP oocyte concentration allows the resumption of meiosis. The oocyte cAMP concentration is regulated by a balance of two types of enzymes: adenylate cyclase (AC) and phosphodiesterases (PDEs), which are responsible for the synthesis and degradation of cAMP, respectively. After being synthesized by AC in cumulus cells, cAMP are transferred to the oocyte through gap junctions. Thus, specific subtypes PDEs are able to inhibit or attenuate the spontaneous meiotic maturation of oocytes with PDE4 primarily involved in the metabolism of cAMP in granulosa cells and PDE3 in the oocyte. Although the immature oocytes can resume meiosis in vitro, after being removed from antral follicles, cytoplasmic maturation seems to occur asynchronously with nuclear maturation. Therefore, knowledge of the oocyte maturation process is fundamental for the development of methodologies to increase the success of in vitro embryo production and to develop treatments for various forms of infertility. This review will present current knowledge about the maintenance of the oocyte in prophase arrest, and the resumption of meiosis during oocyte maturation, focusing mainly on the changes that take place in the oocyte.
Resumo:
The guinea pig may represent an animal model for research on ovarian infertility and improvement of the in vitro maturation (IVM) conditions is needed in this species. The aim of the present work was to immunolocalize the Epidermal Growth Factor (EGF)-Receptor in the guinea pig ovaries and to study the effect of EGF on meiotic and cytoplasmic maturation, and apoptotic rate in cumulus-oocyte-co mplexes (COCs). Immunohistochemistry was performed in paraffined ovaries using a rabbit polyclonal antibody EGF-R (1:100; Santa Cruz Biotechnology) and the ABC Vector Elite kit (Vector Laboratories). For the IVM, COCs were collected by aspiration of follicles >700μm under a stereoscopic microscope.