876 resultados para COMPUTER SCIENCE, THEORY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students difficulties with proofs by induction. Its results suggest that there is a close correlation between students understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students difficulties with proofs by induction. Its results suggest that there is a close correlation between students understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The very nature of computer science with its constant changes forces those who wish to follow to adapt and react quickly. Large companies invest in being up to date in order to generate revenue and stay active on the market. Universities, on the other hand, need to imply same practices of staying up to date with industry needs in order to produce industry ready engineers. By interviewing former students, now engineers in the industry, and current university staff this thesis aims to learn if there is space for enhancing the education through different lecturing approaches and/or curriculum adaptation and development. In order to address these concerns a qualitative research has been conducted, focusing on data collection obtained through semi-structured live world interviews. The method used follows the seven stages of research interviewing introduced by Kvale and focuses on collecting and preparing relevant data for analysis. The collected data is transcribed, refined, and further on analyzed in the Findings and analysis chapter. The focus of analyzing was answering the three research questions; learning how higher education impacts a Computer Science and Informatics Engineers job, how to better undergo the transition from studies to working in the industry and how to develop a curriculum that helps support the previous two. Unaltered quoted extracts are presented and individually analyzed. To paint a better picture a theme-wise analysis is presented summing valuable themes that were repeated throughout the interviewing phase. The findings obtained imply that there are several factors directly influencing the quality of education. From the student side, it mostly concerns expectation and dedication involving studies, and from the university side it is commitment to the curriculum development process. Due to the time and resource limitations this research provides findings conducted on a narrowed scope, although it can serve as a great foundation for further development; possibly as a PhD research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult-there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of principles from the study of artifacts. This point was raised in Curriculum 2001 discussions, and debate needs to start in good time for the next curriculum standard. This paper provides a starting point for debate, by outlining a process by which principles and artifacts may be separated, and presents a sample curriculum to illustrate the possibilities. This sample curriculum has some positive points, though these positive points are incidental to the need to start debating the issue. Other models, with a less rigorous ordering of principles before artifacts, would still gain from making it clearer whether a specific concept was fundamental, or a property of a specific technology. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the world becomes more technologically advanced and economies become globalized, computer science evolution has become faster than ever before. With this evolution and globalization come the need for sustainable university curricula that adequately prepare graduates for life in the industry. Additionally, behavioural skills or soft skills have become just as important as technical abilities and knowledge or hard skills. The objective of this study was to investigate the current skill gap that exists between computer science university graduates and actual industry needs as well as the sustainability of current computer science university curricula by conducting a systematic literature review of existing publications on the subject as well as a survey of recently graduated computer science students and their work supervisors. A quantitative study was carried out with respondents from six countries, mainly Finland, 31 of the responses came from recently graduated computer science professionals and 18 from their employers. The observed trends suggest that a skill gap really does exist particularly with soft skills and that many companies are forced to provide additional training to newly graduated employees if they are to be successful at their jobs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the website for the Nano Research group based at the University of Southampton ECS department, and details current research topics and the people connected with these. It shows some of the current research topics undertaken at the center, and gives an outline of what can be done for post graduate courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What is Computer Science about?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

4 examples of student reflections

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuesday 22nd April 2014 Speaker(s): Sue Sentance Organiser: Leslie Carr Time: 22/04/2014 15:00-16:00 Location: B32/3077 File size: 698 Mb Abstract Until recently, "computing" education in English schools mainly focused on developing general Digital Literacy and Microsoft Office skills. As of this September, a new curriculum comes into effect that provides a strong emphasis on computation and programming. This change has generated some controversy in the news media (4-year-olds being forced to learn coding! boss of the governments coding education initiative cannot code shock horror!!!!) and also some concern in the teaching profession (how can we possibly teach programming when none of the teachers know how to program)? Dr Sue Sentance will explain the work of Computing At School, a part of the BCS Academy, in galvanising universities to help teachers learn programming and other computing skills. Come along and find out about the new English Computing Revolution - How will your children and your schools be affected? - How will our University intake change? How will our degrees have to change? - What is happening to the national perception of Computer Science?