998 resultados para COHERENT CONTROL
Resumo:
Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.
Resumo:
High harmonic generation (HHG) is a central driver of the rapidly growing field of ultrafast science. We present a novel quasiphase-matching (QPM) concept with a dual-gas multijet target leading, for the first time, to remarkable phase control between multiple HHG sources (> 2) within the Rayleigh range. The alternating jet structure with driving and matching zones shows perfect coherent buildup for up to six QPM periods. Although not in the focus of the proof-of-principle studies presented here, we achieved competitive conversion efficiencies already in this early stage of development.
Resumo:
This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.
Two-colour photocurrent detection technique for coherent control of a single InGaAs/GaAs quantum dot
Resumo:
We present a two-colour photocurrent detection method for coherent control of a single InGaAs/GaAs self-assembled quantum dot. A pulse shaping technique provides a high degree of control over picosecond optical pulses. Rabi rotations on the exciton to biexciton transition are presented, and fine structure beating is detected via time-resolved measurements. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We present coherent control of a THz meta-material. Specifically, we show in detail the time and frequency dependent response of a single and a double split ring resonator upon excitation with a shaped THz field. Through far- and near-field measurements, we confirm the coherence transfer from the tailored THz field to the system and back to the radiated field and we demonstrate selective excitation of a designated system resonance with a suitably shaped THz pulse.
Resumo:
Based on the phase-conjugate polarization interference between two-pathway excitations, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the V three-level sum-frequency polarization beat (SFPB) in attosecond scale. Novel interferometric oscillatory behavior is exposed in terms of radiation-radiation, radiation-matter, and matter-matter polarization beats. The phase-coherent control of the light beams in the SFPB is subtle. When the laser has broadband linewidth, the homodyne detected SFPB signal shows resonant-nonresonant cross correlation, a drastic difference for three Markovian stochastic fields, and the autocorrelation of the SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels. It has been also found that the asymmetric behaviors of the polarization beat signals due to the unbalanced controllable dispersion effects between the two arms of interferometer do not affect the overall accuracy in case using the SFPB to measure the Doppler-free energy-level sum of two excited states.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.
Resumo:
An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The capability of intense ultrashort laser pulses to initiate, control and image vibrational wavepacket dynamics in the deuterium molecular ion has been simulated with a view to inform and direct future femtosecond pump-control-probe experiments. The intense-field coherent control of the vibrational superposition has been studied as a function of pulse intensity and delay time, to provide an indication of key constraints for experimental studies. For selected cases of the control mechanism, probing of the subsequent vibrational wavepacket dynamics has been simulated via the photodissociation (PD) channel. Such PD probing is shown to elucidate the modified wavepacket dynamics where the position of the quantum revival is sensitive to the control process. Through Fourier transform analysis the PD yield is also shown to provide a characterisation of the vibrational distribution. It has been shown that a simple 'critical R cut-off' approximation can be used to reproduce the effect of a probe pulse interaction, providing a convenient and efficient alternative to intensive computer simulations of the PD mechanism in the deuterium molecular ion.