980 resultados para COATED CARBIDE TOOLS
Resumo:
This study aims to investigate drilling process in carbon-fiber reinforced plastic (CFRP) composites with multilayer TiAlN/TiN PVD-coated tungsten carbide drill. The effect of process parameters have been investigated in drilling of Hexcel M21-T700GC. Thrust force and torque were measured online throughout the drilling experiments. Delamination were observed using optical microscope and analyzed via a developed algorithm based on digital image processing technique. Surface roughness of each hole was measured using a surface profilometer. In addition, the progression of tool wear in various surfaces of drill was observed using tool microscope and measured using image software. Our results indicate that the thrust force and torque increased with the increasing cutting speed and feed rate. Delamination and average surface roughness that rose with the increase in feed rate, however, decreased with the increasing cutting speed. The average surface roughness tended to increase with the increase in feed rate and decrease with the increasing cutting speed in drilling of carbon-fiber reinforced plastic (CFRP). Feed rate was found as the predominant factor on the drilling outputs. Abrasive wear was observed on both flank and relief surfaces, which created edge wear on cutting edges. No sign of chipping or plastic deformation has been observed on the surfaces of drills. © 2012 The Author(s).
Resumo:
In this research we investigate the performance of drilling process in carbon fibre reinforced composite (CFC) material, titanium alloy and the hybrid stack of these two materials, using coated carbide drill bit. We study the effect of the process parameters such as the feed rate and speed on the induced forces and torques, also on the wear of drill and surface roughness of the holes. In the composite material the percentage of surface damage in both drilling CFC on its own and drilling in stack form is estimated. Also, the effect of worn drill on the surface damage is identified. In the titanium, the burr formation in stack and non-stack form is investigated. The wear of the drill results in increased forces and torques required for drilling. This increases the surface delaminations substantially at the entrance in drilling of CFC. However, the surface roughness of the holes reduces with the wear of the drill in CFC drilling. Also, the surface delamination and surface roughness of the holes in the CFC whilst drilled in hybrid form reduces significantly. This is despite the increase of the forces and torques required in drilling CFC in stack form. Copyright © 2012 Inderscience Enterprises Ltd.
Resumo:
The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.
Resumo:
The machining of hardened steel is becoming increasingly important in manufacturing processes. Machined parts made with hardened steel are often subjected to high service demands, which require great resistance and quality. The machining of this material submits the tools to high mechanical and thermal loads, which increases the tool wear and affects the surface integrity of the part. In that context, this work presents a study of drilling of AISI P20 steel with carbide tools, analyzing the effects on the process caused by the reduction of cutting fluid supply and its relation with the tool wear and the surface integrity of the piece. The major problem observed in the tests was a difficulty for chips to flow through the drill flute, compromising their expulsion from the hole. After a careful analysis, a different machining strategy was adopted to solve the problem
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Experimental and numerical study of heat transfer in hot machined workpiece using infrared radiation
Resumo:
One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.
Resumo:
In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.
Resumo:
An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.
Resumo:
Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG