967 resultados para CO2 storage and evacuation
Resumo:
A comprehensive environmental monitoring program was conducted in the Ojo Guareña cave system (Spain), one of the longest cave systems in Europe, to assess the magnitude of the spatiotemporal changes in carbon dioxide gas (CO2) in the cave–soil–atmosphere profile. The key climate-driven processes involved in gas exchange, primarily gas diffusion and cave ventilation due to advective forces, were characterized. The spatial distributions of both processes were described through measurements of CO2 and its carbon isotopic signal (δ13C[CO2]) from exterior, soil and cave air samples analyzed by cavity ring-down spectroscopy (CRDS). The trigger mechanisms of air advection (temperature or air density differences or barometric imbalances) were controlled by continuous logging systems. Radon monitoring was also used to characterize the changing airflow that results in a predictable seasonal or daily pattern of CO2 concentrations and its carbon isotopic signal. Large daily oscillations of CO2 levels, ranging from 680 to 1900 ppm day−1 on average, were registered during the daily oscillations of the exterior air temperature around the cave air temperature. These daily variations in CO2 concentration were unobservable once the outside air temperature was continuously below the cave temperature and a prevailing advective-renewal of cave air was established, such that the daily-averaged concentrations of CO2 reached minimum values close to atmospheric background. The daily pulses of CO2 and other tracer gases such as radon (222Rn) were smoothed in the inner cave locations, where fluctuation of both gases was primarily correlated with medium-term changes in air pressure. A pooled analysis of these data provided evidence that atmospheric air that is inhaled into dynamically ventilated caves can then return to the lower troposphere as CO2-rich cave air.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
In the framework of a global investigation of the Spanish natural analogues of CO2 storage and leakage, four selected sites from the Mazarrón?Gañuelas Tertiary Basin (Murcia, Spain) were studied for computing the diffuse soil CO2 flux, by using the accumulation chamber method. The Basin is characterized by the presence of a deep, saline, thermal (?47 ?C) CO2-rich aquifer intersected by two deep geothermal exploration wells named ?El Saladillo? (535 m) and ?El Reventón? (710 m). The CO2 flux data were processed by means of a graphical?statistical method, kriging estimation and sequential Gaussian simulation algorithms. The results have allowed concluding that the Tertiary marly cap-rock of this CO2-rich aquifer acts as a very effective sealing, preventing any CO2 leak from this natural CO2 storage site, being therefore an excellent scenario to guarantee, by analogy, the safety of a CO2 storage.
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 112
Resumo:
CO2 Emission from two old mine drillings (Mt. Amiata, Central Italy) as a possible example of storage and leakage of deep-seated CO2
Resumo:
We dedicate this paper to the memory of Prof. Andres Perez Estaún, who was a great and committed scientist, wonderful colleague and even better friend. The datasets in this work have been funded by Fundación Ciudad de la Energía (Spanish Government, www.ciuden.es) and by the European Union through the “European Energy Programme 15 for Recovery” and the Compostilla OXYCFB300 project. Dr. Juan Alcalde is currently funded by NERC grant NE/M007251/1. Simon Campbell and Samuel Cheyney are acknowledged for thoughtful comments on gravity inversion
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.
Resumo:
With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.
Resumo:
A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.
Resumo:
We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.
Resumo:
The climatic water balance is one of the most used tools to assess, indirectly the amount of water present in the soil is capable of meeting the water needs of the plant. This study analyzed the climatologic hydric balance, the effective soil water storage and coffee plant transpiration in dry regimen cultivation. Daily climatologic hydric balance was calculated for coffee from January 2003 to May 2006. It was concluded that even in the most rainy months of the year, there is a hydric deficit in coffee plants grown in a dry regimen; effective soil water storage varied greatly through the years evaluated, and September was the most critical month, when this value remained below 30%; relative transpiration can not be taken as the single evaluation method for yield losses of coffee, grown in a dry regimen.
Resumo:
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.
Resumo:
Objective: To determine the effect of semen storage and separation techniques on sperm DNA fragmentation. Design: Controlled clinical study. Setting: An assisted reproductive technology laboratory. Patient(s): Thirty normoozospermic semen samples obtained from patients undergoing infertility evaluation. Intervention(s): One aliquot from each sample was immediately prepared (control) for the sperm chromatin dispersion assay (SCD). Aliquots used to assess storage techniques were treated in the following ways: snap frozen by liquid nitrogen immersion, slow frozen with Tris-yolk buffer and glycerol, kept on ice for 24 hours or maintained at room temperature for 4 and 24 hours. Aliquots used to assess separation techniques were processed by the following methods: washed and centrifuged in media, swim-up from washed sperm pellet, density gradient separation, density gradient followed by swim-up. DNA integrity was then measured by SCD. Main Outcome Measure(s): DNA fragmentation as measured by SCD. Result(s): There was no significant difference in fragmentation among the snap frozen, slow frozen, and wet-ice groups. Compared to other storage methods short-term storage at room temperature did not impact DNA fragmentation yet 24 hours storage significantly increased fragmentation. Swim-up, density gradient and density gradient/swim-up had significantly reduced DNA fragmentation levels compared with washed semen. Postincubation, density gradient/swim-up showed the lowest fragmentation levels. Conclusion(s): The effect of sperm processing methods on DNA fragmentation should be considered when selecting storage or separation techniques for clinical use. (Fertil Steril (R) 2010;94:2626-30. (C) 2010 by American Society for Reproductive Medicine.)