992 resultados para CLINICAL PHARMACOKINETICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methadone is widely used for the treatment of opioid dependence. Although in most countries the drug is administered as a racemic mixture of (R)- and (S)- methadone, (R)-methadone accounts for most, if not all, of the opioid effects. Methadone can be detected in the blood 15-45 minutes after oral administration, with peak plasma concentration at 2.5-4 hours. Methadone has a mean bioavailability of around 75% (range 36-100%). Methadone is highly bound to plasma proteins, in particular to alpha(1)-acid glycoprotein. Its mean free fraction is around 13%, with a 4-fold interindividual variation. Its volume of distribution is about 4 L/kg (range 2-13 L/kg). The elimination of methadone is mediated by biotransformation, followed by renal and faecal excretion. Total body clearance is about 0.095 L/min, with wide interindividual variation (range 0.02-2 L/min). Plasma concentrations of methadone decrease in a biexponential manner, with a mean value of around 22 hours (range 5-130 hours) for elimination half-life. For the active (R)-enantiomer, mean values of around 40 hours have been determined. Cytochrome P450 (CYP) 3A4 and to a lesser extent 2D6 are probably the main isoforms involved in methadone metabolism. Rifampicin (rifampin), phenobarbital, phenytoin, carbamazepine, nevirapine, and efavirenz decrease methadone blood concentrations, probably by induction of CYP3A4 activity, which can result in severe withdrawal symptoms. Inhibitors of CYP3A4, such as fluconazole, and of CYP2D6, such as paroxetine, increase methadone blood concentrations. There is an up to 17-fold interindividual variation of methadone blood concentration for a given dosage, and interindividual variability of CYP enzymes accounts for a large part of this variation. Since methadone probably also displays large interindividual variability in its pharmacodynamics, methadone treatment must be individually adapted to each patient. Because of the high morbidity and mortality associated with opioid dependence, it is of major importance that methadone is used at an effective dosage in maintenance treatment: at least 60 mg/day, but typically 80-100 mg/day. Recent studies also show that a subset of patients might benefit from methadone dosages larger than 100 mg/day, many of them because of high clearance. In clinical management, medical evaluation of objective signs and subjective symptoms is sufficient for dosage titration in most patients. However, therapeutic drug monitoring can be useful in particular situations. In the case of non-response trough plasma concentrations of 400 microg/L for (R,S)-methadone or 250 microg/L for (R)-methadone might be used as target values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rocuronium (ROC) is a neuromuscular blocking agent used in surgical procedures which is eliminated primarily by biliary excretion. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for analysis of ROC in human plasma. Separation of ROC and IS (verapamil) was performed using an endcapped C-18 column and a mixture of water:acetonitrile:trifluoracetic acid (50:50:0.1, v/v) as mobile phase. Aliquots of 100 mu L of human plasma were extracted at pH 3, using dichloromethane. The lower limit of quantification of 5 ng/mL shows the high sensitivity of this method. Intra- and inter-assay precision (as relative standard deviation) was all <= 14.2% and accuracy (as relative standard error) did not exceed 10.1%. The validated method was successfully applied to quantify ROC concentrations in patients under surgical procedures up to 6 h after the administration of the 0.4-0.9 mg/kg ROC. The pharmacokinetic parameter estimations of ROC showed AUC/dose of 563 mu g min/mL, total clearance of 2.5 mL/min/kg, volume of distribution at steady state of 190 mL/kg and mean residence time of 83 min. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak (R) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this review is to analyse critically the recent literature on the clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplant recipients. Dosage and target concentration recommendations for tacrolimus vary from centre to centre, and large pharmacokinetic variability makes it difficult to predict what concentration will be achieved with a particular dose or dosage change. Therapeutic ranges have not been based on statistical approaches. The majority of pharmacokinetic studies have involved intense blood sampling in small homogeneous groups in the immediate post-transplant period. Most have used nonspecific immunoassays and provide little information on pharmacokinetic variability. Demographic investigations seeking correlations between pharmacokinetic parameters and patient factors have generally looked at one covariate at a time and have involved small patient numbers. Factors reported to influence the pharmacokinetics of tacrolimus include the patient group studied, hepatic dysfunction, hepatitis C status, time after transplantation, patient age, donor liver characteristics, recipient race, haematocrit and albumin concentrations, diurnal rhythm, food administration, corticosteroid dosage, diarrhoea and cytochrome P450 (CYP) isoenzyme and P-glycoprotein expression. Population analyses are adding to our understanding of the pharmacokinetics of tacrolimus, but such investigations are still in their infancy. A significant proportion of model variability remains unexplained. Population modelling and Bayesian forecasting may be improved if CYP isoenzymes and/or P-glycoprotein expression could be considered as covariates. Reports have been conflicting as to whether low tacrolimus trough concentrations are related to rejection. Several studies have demonstrated a correlation between high trough concentrations and toxicity, particularly nephrotoxicity. The best predictor of pharmacological effect may be drug concentrations in the transplanted organ itself. Researchers have started to question current reliance on trough measurement during therapeutic drug monitoring, with instances of toxicity and rejection occurring when trough concentrations are within 'acceptable' ranges. The correlation between blood concentration and drug exposure can be improved by use of non-trough timepoints. However, controversy exists as to whether this will provide any great benefit, given the added complexity in monitoring. Investigators are now attempting to quantify the pharmacological effects of tacrolimus on immune cells through assays that measure in vivo calcineurin inhibition and markers of immuno suppression such as cytokine concentration. To date, no studies have correlated pharmacodynamic marker assay results with immunosuppressive efficacy, as determined by allograft outcome, or investigated the relationship between calcineurin inhibition and drug adverse effects. Little is known about the magnitude of the pharmacodynamic variability of tacrolimus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Memantine, a frequently prescribed anti-dementia drug, is mainly eliminated unchanged by the kidneys, partly via tubular secretion. Considerable inter-individual variability in plasma concentrations has been reported. We aimed to investigate clinical and genetic factors influencing memantine disposition. METHODS: A population pharmacokinetic study was performed including data from 108 patients recruited in a naturalistic setting. Patients were genotyped for common polymorphisms in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1) and nuclear receptors (NR1I2, NR1I3, RXR, PPAR) involved in transporter expression. RESULTS: The average clearance was 5.2 L/h with a 27 % inter-individual variability (percentage coefficient of variation). Glomerular filtration rate (p = 0.007) and sex (p = 0.001) markedly influenced memantine clearance. NR1I2 rs1523130 was identified as the unique significant genetic covariate for memantine clearance (p = 0.006), with carriers of the NR1I2 rs1523130 CT/TT genotypes presenting a 16 % slower memantine elimination than carriers of the CC genotype. CONCLUSION: The better understanding of inter-individual variability of memantine disposition might be beneficial in the context of individual dose optimization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Valganciclovir and ganciclovir are widely used for the prevention of cytomegalovirus (CMV) infection in solid organ transplant recipients, with a major impact on patients' morbidity and mortality. Oral valganciclovir, the ester prodrug of ganciclovir, has been developed to enhance the oral bioavailability of ganciclovir. It crosses the gastrointestinal barrier through peptide transporters and is then hydrolysed into ganciclovir. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of therapeutic drug monitoring. Based on currently available literature, ganciclovir pharmacokinetics in adult solid organ transplant recipients receiving oral valganciclovir are characterized by bioavailability of 66 +/- 10% (mean +/- SD), a maximum plasma concentration of 3.1 +/- 0.8 mg/L after a dose of 450 mg and of 6.6 +/- 1.9 mg/L after a dose of 900 mg, a time to reach the maximum plasma concentration of 3.0 +/- 1.0 hours, area under the plasma concentration-time curve values of 29.1 +/- 5.3 mg.h/L and 51.9 +/- 18.3 mg.h/L (after 450 mg and 900 mg, respectively), apparent clearance of 12.4 +/- 3.8 L/h, an elimination half-life of 5.3 +/- 1.5 hours and an apparent terminal volume of distribution of 101 +/- 36 L. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Unexplained interpatient variability is limited (18% in apparent clearance and 28% in the apparent central volume of distribution). There is no indication of erratic or limited absorption in given subgroups of patients; however, this may be of concern in patients with severe malabsorption. The in vitro pharmacodynamics of ganciclovir reveal a mean concentration producing 50% inhibition (IC(50)) among CMV clinical strains of 0.7 mg/L (range 0.2-1.9 mg/L). Systemic exposure of ganciclovir appears to be moderately correlated with clinical antiviral activity and haematotoxicity during CMV prophylaxis in high-risk transplant recipients. Low ganciclovir plasma concentrations have been associated with treatment failure and high concentrations with haematotoxicity and neurotoxicity, but no formal therapeutic or toxic ranges have been validated. The pharmacokinetic parameters of ganciclovir after valganciclovir administration (bioavailability, apparent clearance and volume of distribution) are fairly predictable in adult transplant patients, with little interpatient variability beyond the effect of renal function and bodyweight. Thus ganciclovir exposure can probably be controlled with sufficient accuracy by thorough valganciclovir dosage adjustment according to patient characteristics. In addition, the therapeutic margin of ganciclovir is loosely defined. The usefulness of systematic therapeutic drug monitoring in adult transplant patients therefore appears questionable; however, studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: High interindividual variability in plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, may lead to suboptimal drug concentration. OBJECTIVE: Using a population pharmacokinetic approach, we aimed to characterize the genetic and non-genetic sources of variability affecting risperidone and 9-hydroxyrisperidone pharmacokinetics, and relate them to common side effects. METHODS: Overall, 150 psychiatric patients (178 observations) treated with risperidone were genotyped for common polymorphisms in NR1/2, POR, PPARα, ABCB1, CYP2D6 and CYP3A genes. Plasma risperidone and 9-hydroxyrisperidone were measured, and clinical data and common clinical chemistry parameters were collected. Drug and metabolite concentrations were analyzed using non-linear mixed effect modeling (NONMEM(®)). Correlations between trough concentrations of the active moiety (risperidone plus 9-hydroxyrisperidone) and common side effects were assessed using logistic regression and linear mixed modeling. RESULTS: The cytochrome P450 (CYP) 2D6 phenotype explained 52 % of interindividual variability in risperidone pharmacokinetics. The area under the concentration-time curve (AUC) of the active moiety was found to be 28 % higher in CYP2D6 poor metabolizers compared with intermediate, extensive and ultrarapid metabolizers. No other genetic markers were found to significantly affect risperidone concentrations. 9-hydroxyrisperidone elimination was decreased by 26 % with doubling of age. A correlation between trough predicted concentration of the active moiety and neurologic symptoms was found (p = 0.03), suggesting that a concentration >40 ng/mL should be targeted only in cases of insufficient, or absence of, response. CONCLUSIONS: Genetic polymorphisms of CYP2D6 play an important role in risperidone, 9-hydroxyrisperidone and active moiety plasma concentration variability, which were associated with common side effects. These results highlight the importance of a personalized dosage adjustment during risperidone treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Objective The use of metformin throughout gestation by women with polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) significantly reduces the number of first-trimester spontaneous abortions and the rate of occurrence of gestational diabetes and hypertensive syndromes. Metformin is taken up into renal tubular cells by organic cation transport 2 (OCT2) and eliminated unchanged into the urine. The objective of this study was to analyse the influence of T2DM on the pharmacokinetics of metformin in obese pregnant women and in a control group of non-diabetic obese pregnant women with PCOS. Methods Eight non-diabetic obese pregnant women with PCOS and nine obese pregnant women with T2DM taking oral metformin 850 mg every 12 h were evaluated throughout gestation. Serial blood samples were collected over a 12-h period during the third trimester of pregnancy. Steady-state plasma concentrations of metformin were determined by high-performance liquid chromatography with a UV detector. The pharmacokinetic results of the two groups, reported as median and 25th and 75th percentile, were compared statistically using the Mann Whitney test, with the level of significance set at p < 0.05. Results The pharmacokinetic parameters detected for PCOS versus T2DM patients, reported as median, were, respectively: elimination half-life 3.75 versus 4.00 h; time to maximum concentration 2.00 versus 3.00 h; maximum concentration 1.42 versus 1.21 mu g/mL; mean concentration 0.53 versus 0.56 mu g/mL; area under the plasma concentration time curve from time zero to 12 h 6.42 versus 6.73 mu g.h/mL; apparent total oral clearance 105.39 versus 98.38 L/h; apparent volume of distribution after oral administration 550.51 versus 490.98 L; and fluctuation (maximum minimum concentration variation) of 179.56 versus 181.73%. No significant differences in pharmacokinetic parameters were observed between the groups. Conclusion T2DM in the presence of insulin use does not influence the pharmacokinetics of metformin in pregnant patients, demonstrating the absence of a need to increase the dose, and consequently does not influence the OCT2-mediated transport in pregnant women with PCOS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.