919 resultados para CHOLINERGIC ANTIINFLAMMATORY PATHWAY
Resumo:
Spatial learning requires the septohippocampal pathway. The interaction of learning experience with gene products to modulate the function of a pathway may underlie use-dependent plasticity. The regulated release of nerve growth factor (NGF) from hippocampal cultures and hippocampus, as well as its actions on cholinergic septal neurons, suggest it as a candidate protein to interact with a learning experience. A method was used to evaluate NGF gene-experience interaction on the septohippocampal neural circuitry in mice. The method permits brain region-specific expression of a new gene by using a two-component approach: a virus vector directing expression of cre recombinase; and transgenic mice carrying genomic recombination substrates rendered transcriptionally inactive by a “floxed” stop cassette. Cre recombinase vector delivery into transgenic mouse hippocampus resulted in recombination in 30% of infected cells and the expression of a new gene in those cells. To examine the interaction of the NGF gene and experience, adult mice carrying a NGF transgene with a floxed stop cassette (NGFXAT) received a cre recombinase vector to produce localized unilateral hippocampal NGF gene expression, so-called “activated” mice. Activated and control nonactivated NGFXAT mice were subjected to different experiences: repeated spatial learning, repeated rote performance, or standard vivarium housing. Latency, the time to complete the learning task, declined in the repeated spatial learning groups. The measurement of interaction between NGF gene expression and experience on the septohippocampal circuitry was assessed by counting retrogradely labeled basal forebrain cholinergic neurons projecting to the hippocampal site of NGF gene activation. Comparison of all NGF activated groups revealed a graded effect of experience on the septohippocampal pathway, with the largest change occurring in activated mice provided with repeated learning experience. These data demonstrate that plasticity of the adult spatial learning circuitry can be robustly modulated by experience-dependent interactions with a specific hippocampal gene product.
Resumo:
The purpose of this study was to examine the relationship between cardiac autonomic control derived from heart rate variability (HRV), high-sensitivity C-reactive protein (hs-CRP) and physical activity (PA) levels measured using accelerometers. A total of 80 healthy university students volunteered to participate in this study (20.56 +/- 0.82 years, 1.36 +/- 1.5 mg/L of hs-CRP). The participants were divided into groups based on tertiles of hs-CRP. Analysis of covariance adjusted to PA was used to assess group differences in HRV. Associations between hs-CRP, HRV indices and PA were analyzed using Pearson's correlation. The participants at the highest tertile of hs-CRP (tertile 3) had lower cardiac vagal modulation (SDNN, tertile 1=78.05 +/- 5.9,tertile 2=82.43 +/- 5.9,tertile 3=56.03 +/- 6.1; SD1, tertile 1=61.27 +/- 5.3, tertile 2=62.93 +/- 5.4, tertile 3=40.03 +/- 5.5). In addition, vagal indices were inversely correlated with hs-CRP but positively correlated with PA (SDNN r=-0.320, SD1 r=-0.377; SDNN r=0.304, SD1 r=0.299; P<0.05). Furthermore, the most physically active subjects had lower levels of hs-CRP and the highest levels of vagal modulation.
Resumo:
BACKGROUND: Elevated plasma fibrinogen levels have prospectively been associated with an increased risk of coronary artery disease in different populations. Plasma fibrinogen is a measure of systemic inflammation crucially involved in atherosclerosis. The vagus nerve curtails inflammation via a cholinergic antiinflammatory pathway. We hypothesized that lower vagal control of the heart relates to higher plasma fibrinogen levels. METHODS: Study participants were 559 employees (age 17-63 years; 89% men) of an airplane manufacturing plant in southern Germany. All subjects underwent medical examination, blood sampling, and 24-hour ambulatory heart rate recording while kept on their work routine. The root mean square of successive differences in RR intervals during the night period (nighttime RMSSD) was computed as the heart rate variability index of vagal function. RESULTS: After controlling for demographic, lifestyle, and medical factors, nighttime RMSSD explained 1.7% (P = 0.001), 0.8% (P = 0.033), and 7.8% (P = 0.007), respectively, of the variance in fibrinogen levels in all subjects, men, and women. Nighttime RMSSD and fibrinogen levels were stronger correlated in women than in men. In all workers, men, and women, respectively, there was a mean +/- SEM increase of 0.41 +/- 0.13 mg/dL, 0.28 +/- 0.13 mg/dL, and 1.16 +/- 0.41 mg/dL fibrinogen for each millisecond decrease in nighttime RMSSD. CONCLUSIONS: Reduced vagal outflow to the heart correlated with elevated plasma fibrinogen levels independent of the established cardiovascular risk factors. This relationship seemed comparably stronger in women than men. Such an autonomic mechanism might contribute to the atherosclerotic process and its thrombotic complications.
Resumo:
Subjects with Alzheimer's disease (AD) exhibit normal visually evoked potentials (VEP) to pattern reversal stimuli but a delayed P2 flash response. The pattern response may originate in the primary visual cortex via the geniculo-calcarine pathway while the flash P2 may originate in the association areas via the cholinergic-tectal pathway. We now show: a) that the pathology of AD is more prominent in the visual association areas B18/19 than in B17 and b) that the magnetic signal to flash and pattern may originate from B18/19 and B17 respectively.
Resumo:
Islet neogenesis associated protein (INGAP) increases islet mass and insulin secretion in neonatal and adult rat islets. lit the Present Study, we measured the short- and long-term effects of INGAP-PP (a pentadecapeptide having the 104-118 amino acid sequence of INGAP) upon islet protein expression and phosphorylation of components of the PI3K, MAPK and cholinergic pathways, and on insulin secretion. Short-term exposure of neonatal islets to INGAP-PP (90 s, 5, 15, and 30 min) significantly increased Akt1(-Ser473) and MAPK3/1(-Thr202/Tyr204) phosphorylation and INGAP-PP also acutely increased insulin secretion from islets perifused with 2 and 20 mM glucose. Islets cultured for 4 days in the presence of INGAP-PP showed an increased expression of Akt1, Frap1, and Mapk1 mRNAs as well as of the muscarinic M3 receptor subtype, and phospholipase C (PLC)-beta 2 proteins. These islets also showed increased Akt1 and MAPK3/1 protein phosphorylation. Brief exposure of INGAP-P-treated islets to carbachol (Cch) significantly increased P70S6K(-Thr389) and MAPK3/1 phosphorylation and these islets released more insulin when challenged with Cch that was prevented by the M3 receptor antagonist 4-DAMP in a concentration-dependent manner. In conclusion, these data indicate that short- and long-term exposure to INGAP-PP significantly affects the expression and the phosphorylation of proteins involved in islet PI3K and MAPK signaling pathways. The observations of INGAPP-PP-stimulated up-regulation of cholinergic M3 receptors and PLC-beta 2 proteins, enhanced P70S6K and MAIIK3/1 phosphorylation and Cch-induced insulin secretion suggest a participation of the cholinergic pathway in INGAP-PP-mediated effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Levetiracetam (LEV) is a prominent antiepileptic drug (AED) which binds to neuronal synaptic vesicle glycoprotein 2A (SV2A) protein and has reported effects on ion channels, but retains a poorly-defined mechanism of action. Here, we investigate inhibition of voltage-dependent Ca2+ (CaV) channels as a potential mechanism by which LEV imparts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and CaV channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated effects of the LEV ‘inactive’ R-enantiomer, UCB L060. Thus, LEV, but not UCB L060 (each 100 μM), inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials (EPSP) following ≥30 min application. In isolated SCGNs, LEV pretreatment (≥1 h), but not acute (5 min) application, significantly inhibited whole-cell IBa amplitude. In current clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential (AHP) in a Ca2+-dependent manner, but also increased action potential (AP) latency in a Ca2+-independent manner, suggesting further mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused a rapid inhibition of IBa amplitude to an extent comparable to that seen following extracellular LEV pretreatment ( ≥ 1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on IBa amplitude. These results identify a stereospecific intracellular pathway by which LEV inhibits presynaptic CaV channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.
Resumo:
Endothelin peptides have been shown to increase cholinergic neurotransmission in the airway. Genetic differences in airway responsiveness to methacholine where reported in mice. The present study compared the airway reactivity to methacholine in C57Bl/6 and BALB/c mice, the involvement of endothelin on this reactivity and endothelin levels in lung homogenates. Whole airway reactivity was analyzed by means of an isolated lung preparation where lungs were perfused through the trachea with warm gassed Krebs solution at 5 ml/min, and changes in perfusion pressure triggered by methacholine at increasing bolus doses (0.1-100 mu g) were recorded. We found that the maximal airway response to methacholine was much greater in C57Bl/6 than in BALB/c (Emax 34 +/- 2 vs 12 +/- 1 cmH(2)O, respectively). Bosentan (mixed endothelin A/B receptor antagonist; 10 mg/kg, i.p., 30 min before sacrifice) reduced lung responsiveness to methacholine in C57Bl/6 (58% at EC50 level) but had no effect in BALB/c mouse strain. This effect seems to be mediated by the endothelin ETA receptor since it was significantly reduced by the selective endothelin ETA receptor antagonist, BQ 123. Immunoreactive endothelin levels were higher in C57Bl/6 than in BALB/c lungs (43 5 vs 19 +/- 5 pg/g of tissue). In conclusion, airway reactivity to methacholine and lung endothelins content varies markedly between C57Bl/6 and BALB/c strains. Endothelins upregulate lung responsiveness to methacholine only in C57Bl/6, an effect achieved through the endothelin ETA receptor. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.
Resumo:
Converging TGF-β and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-β pathway. Dauer recovery in these animals is inhibited by the muscarinic antagonist atropine. Muscarinic agonists do not induce dauer recovery of either daf-2 or age-1 mutant animals, which have defects in the insulin-like signaling pathway. These data suggest that a metabotropic acetylcholine signaling pathway activates an insulin-like signal during C. elegans dauer recovery. Analogous and perhaps homologous cholinergic regulation of mammalian insulin release by the autonomic nervous system has been noted. In the parasitic nematode Ancylostoma caninum, the dauer larval stage is the infective stage, and recovery to the reproductive stage normally is induced by host factors. Muscarinic agonists also induce and atropine potently inhibits in vitro recovery of A. caninum dauer arrest. We suggest that host or parasite insulin-like signals may regulate recovery of A. caninum and could be potential targets for antihelminthic drugs.
Resumo:
Cardiac myocytes have been shown to express constitutively endothelial nitric oxide synthase (eNOS) (nitric oxide synthase 3), the activation of which has been implicated in the regulation of myocyte L-type voltage-sensitive calcium channel current (ICa-L) and myocyte contractile responsiveness to parasympathetic nervous system signaling, although this implication remains controversial. Therefore, we examined the effect of the muscarinic cholinergic agonist carbachol (CCh) on ICa-L and contractile amplitude in isoproterenol (ISO)-prestimulated ventricular myocytes isolated from adult mice, designated eNOSnull mice, with targeted disruption of the eNOS gene. Although both eNOSnull and wild-type (WT) ventricular myocytes exhibited similar increases in ICa-L in response to ISO, there was no measurable suppression of ICa-L by CCh in cells from eNOSnull mice, in contrast to cells from WT mice. These results were reflected in the absence of an effect of CCh on the positive inotropic effect of ISO in eNOSnull myocytes. Also, unlike myocytes from WT animals, eNOSnull myocytes failed to exhibit an increase in cGMP content in response to CCh. Nevertheless, the pharmacologic nitric oxide donors 3-morpholino-sydnonimine and S-nitroso-acetyl-cystein increased cGMP generation and suppressed ISO-augmented ICa-L in eNOSnull cells, suggesting that the signal transduction pathway(s) downstream of eNOS remained intact. Of importance, activation of the acetylcholine-activated K+ channel by CCh was unaffected in atrial and ventricular eNOSnull myocytes. These results confirm the obligatory role of eNOS in coupling muscarinic receptor activation to cGMP-dependent control of ICa-L in cardiac myocytes.
Resumo:
Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the participation of guanylate cyclase in the NO pathway. The guanylate cyclase inhibitor, methylene blue, blocked the NO-induced enhancement of EPSCs but only reduced the inhibition of IPSCs indicating that an additional mechanism participates to the depression of synaptic transmission by NO. Using nicotinamide, an inhibitor of ADP-ribosylation, we found that the NO-induced depression of ACh release on the inhibitory synapse also involves ADP-ribosylation mechanism(s). Furthermore, application of SIN-1 paired with cGMP-dependent protein kinase (cGMP-PK) inhibitors showed that cGMP-PK could play a role in the potentiating but not in the depressing effect of NO on ACh release. Increasing the frequency of stimulation of the presynaptic neuron from 1/60 Hz to 0.25 or 1 Hz potentiated the EPSCs and reduced the IPSCs. In these conditions, the potentiating effect of NO on the excitatory synapse was reduced, whereas its depressing effect on the inhibitory synapse was unaffected. Moreover the frequency-dependent enhancement of ACh release in the excitatory synapse was greatly reduced by the inhibition of NO synthase. Our results indicate that NO may be involved in different ways of modulation of synaptic transmission depending on the type of the synapse including synaptic plasticity.
Resumo:
The Abeta peptide of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APP), which are considered type I transmembrane glycoproteins. Recently, however, soluble forms of full-length APP were also detected in several systems including chromaffin granules. In this report we used antisera specific for the cytoplasmic sequence of APP to show that primary bovine chromaffin cells secrete a soluble APP, termed solAPPcyt, of an apparent molecular mass of 130 kDa. This APP was oversecreted from Chinese hamster ovary cells transfected with a full-length APP cDNA indicating that solAPPcyt contained both the transmembrane and Abeta sequence. Deglycosylation of solAPPcyt showed that it contained both N- and O-linked sugars, suggesting that this APP was transported through the endoplasmic reticulum-Golgi pathway. Secretion of solAPPcyt from primary chromatin cells was temperature-, time-, and energy-dependent and was stimulated by cell depolarization in a Ca2+-dependent manner. Cholinergic receptor agonists, including acetylcholine, nicotine, or carbachol, stimulated the rapid secretion of solAPPcyt, a process that was inhibited by cholinergic antagonists. Stimulation of solAPPcyt secretion was paralleled by a stimulation of secretion in catecholamines and chromogranin A, indicating that secretion of solAPPcyt was mediated by chromaffin granule vesicles. Taken together, our results show that release of the potentially amyloidogenic solAPPcyt is an active cellular process mediated by both the constitutive and regulated pathways. solAPPcyt was also detected in human cerebrospinal fluid. Combined with the neuronal physiology of chromaffin cells, our data suggest that cholinergic agonists may stimulate the release of this APP in neuronal synapses where it may exert its biological functions. Moreover, vesicular or secreted solAPPcyt may serve as a soluble precursor of Abeta.