22 resultados para CEF3
Resumo:
CeF3:Tb3+ nanoparticles were successfully prepared by a polyol process using diethylene glycol ( DEG) as solvent. After being coated with dense silica, these CeF3:Tb3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 ( P 123) as structure-directing agent. The composite can load ibuprofen and release the drug in the PBS. The composite was characterized by X-ray diffraction ( XRD), transmission electron microscopy ( TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively.
Resumo:
CeF3 and CeF3:Tb3+ nanoparticles were prepared by reverse microemulsion with a functional monomer, methyl methacrylate (MMA), as the oil phase, and CeF3:Tb3+/poly (methyl methacrylate) (PMMA) nanocomposites were obtained via polymerization of the MMA monomer. The nanoparticles and nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), low- and high-resolution transmission electron microscope (TEM), selected-area electron diffraction (SAED), thermogravimetric analysis (TGA), UV/vis transmission spectra, photoluminescence excitation, and emission spectra and luminescence decays. The well-crystallized CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 15 nm. They show the characteristic emission of Ce3+ 5d-4f (313 nm, D-2-F-2(5/2); 323 nm, D-2-F-2(7/2)) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 541 nm as the strongest one) transitions, respectively.
Resumo:
LaF3. CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core-shell) 2D nanoplates have been successfully synthesized by a facile and effective hydrothermal process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The experimental results indicate that the organic additive, trisodium citrate (Cit(3-)), as a shape modifier has the dynamic effect by adjusting the growth rate of different crystal facets, resulting in forming the anisotropic geometries of the final products. The possible formation mechanisms for different products have been presented. The CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core/shell) nanoplates show characteristic emission of Ce3+ (5d-4f) and Tb3+ (f-f), respectively.
Resumo:
CeF3: Tb3+ nanoparticles (short pillar-like morphology with an average length and width of 11 and 5 nm, respectively) were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with a SiO2-NH2 layer, these CeF3: Tb3+ nanoparticles can be conjugated with biotin molecules (activated by thionyl chloride) and further with avidin. The as-formed CeF3: Tb3+ nanoparticles, CeF3: Tb3+ nanoparticles functionalized with amino groups, biotin conjugated amino-functionalized CeF3: Tb3+ nanoparticles and biotinylated CeF3: Tb3+ nanoparticles bonded with avidin were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV/vis absorption spectra and luminescence spectra, respectively. The biofunctionalization of the CeF3: Tb3+ nanoparticles has less effect on their luminescence properties, i.e. they still show strong green emission (from Tb3+, with D-5(4) - F-7(5) at 543 nm as the most prominent group), indicative of the great potential for these CeF3: Tb3+ nanoparticles to be used as biological fluorescence probes.
Resumo:
The nanocrystals of CeF3 with the hexagonal structure and different morphologies such as the disk, the rod, and the dot have been successfully synthesized via a mild ultrasound assisted route from an aqueous solution of cerium nitrate and different fluorine sources (KBF4, NaF, NH4F). The use of different fluorine sources has a remarkable effect on the morphology of the final product. The luminescence and UV-vis absorption properties of CeF3 nanocrystals with different morphologies have been investigated. Compared with other shape nanocrystals, the luminescence intensity of the disklike nanocrystals is obviously enhanced. It is suggested that the function-improved materials could be obtained by tailoring the shape of the CeF3 nanocrystals.
Resumo:
CeF3 and lutetium-doped CeF3 nanoparticles with the dopant concentration of 17, 25, 30, 42 and 50 mol% (molar ratio, Lu/Ce) were synthesized. XRD patterns were indexed to a pure CeF3 hexagonal phase even under the dopant concentration of 50 mol%. Environmental scanning electron microscopy-field emission gun (ESEM-FEG) was used to characterize the morphology of the final products. From the luminescence spectra of the products, we can get a broad emission ranging from 290 to 400 nm with peak at 325 nm. Lutetium-doping increases the luminescence intensity. We got. the most intense luminescence at the dopant concentration of 30 mol%.
Resumo:
CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles.
Resumo:
In this article, we firstly reported on the synthesis and characterization of ultratine CeF3 nanoparticles (NPs) modified by catanionic surfactant via a reverse micelles-based route. The catanionic surfactant PN was prepared by mixing the di(2-ethylhexyl) phosphoric acid (DEHPA) and primary amine (N1923) with 1:1 molar ratio. It exhibited a high surface activity and formed much small reverse micelles in comparison with its individual component (DEHPA or N1923). The PN reverse micelles were then used as templates to prepare ultrafine CeF3 NPs. The narrow distributed nanoparticles have an average diameter 1.8 nm. FTIR spectra indicated that there existed strong chemical interactions between nanoparticles and the adsorbed surfactants. The modification resulted in the FFIR peak position of P=O shifting to lower energy. Due to the effect of modification and small size, the CeF3 NPs showed a remarkable red shift of 54 mn in the fluorescence emission in comparison with that of bulk material and a red shift of 18 nm in contrast with that of the normal CeF3 NPs with an average diameter of 16 nm.
Resumo:
为适应在n、γ昆合脉冲辐射场中对低强度快脉冲y辐射测量的需要,近年国内新研制出实用型YAlO3:Ce(YAP:Ce)快响应无机闪烁晶体。我们使用脉冲线性电流大于1.5A的光电倍增管,分别配置这种晶体以及CeF3、NaI等晶体构成闪烁探测器,在放射性标准源场中,对晶体的相对探测能力进行测量。测量结果表明:国产新型YAP:Ce无机晶体对这1.25MeV射线的探测能力比同体积的CeF3平均高一个量级,是同体积NaI的40%左右;当晶体厚度小于2mm时,YAP:Ce与CeF2、NaI的输出比值分别大于16和44%,说明厚度越薄晶体的相对探测能力越强。
Resumo:
针对Cyanex 923萃取分离铈、钍、稀土过程中Ce(IV)在萃取过程中被有机相中的还原性物质还原的问题,提出采用高锰酸钾氧化萃余水相中的Ce(III)。研究结果表明,在酸性条件下,高锰酸钾能有效的氧化水相中的Ce(III),但在萃取过程中,高锰酸根会先于Ce(IV)被萃入到有机相中,从而失去氧化Ce(III)的能力,由此提出氧化过程必须无含Cyanex 923有机相存在并参与设计了一套油水分离氧化装置。经过高锰酸钾氧化后,萃余水相中铈可低于0.5g/L,铈收率达到98%。 针对攀西氟碳铈矿新流程中直接制备的纳米级氟化铈,考察了氟化铈的紫外吸收性能,发现其在254nm处有特征吸收峰,还考察了分散剂的极性强弱、分散物浓度、粒径、温度及表面包覆等因素对紫外吸收性能的影响;发现随着粒径的减小,紫外吸收峰发生明显的红移;经TiO2包覆后CeF3的紫外吸光域范围扩展。 研究了Cyanex 923与P204组成的双溶剂萃取体系及其单独体系萃取Ce(IV)、F及Ce(IV)-F混液的热力学性质,得出了协同萃取机理,获得了萃取平衡方程式以及协萃物的组成。研究发现混合体系对Ce(IV)及Ce(IV)-F混液中的Ce、F均有明显的协萃作用,这为该萃取体系应用于现实分离中提供了可靠的保证。 在上述工作的基础上,提出了Cyanex 923与P204组成的双溶剂萃取体系分离攀西氟碳铈矿的新清洁冶金流程。对影响这一流程的化学因素进行了系统研究,并给出了工艺运行参数。
Resumo:
稀土纳米材料因其独特的光、电、磁和催化等性能,在纳米器件和功能材料等诸多领域具有重要的应用价值。大量研究表明,纳米材料的物理和化学性质与其尺寸、成分、形貌和晶型密切相关。稀土纳米材料的合成方法有许多,然而,要真正实现这类材料的简单可控合成仍然是个艰难的课题。超声化学法由于具有操作简单、合成周期短、反应温度低、成本低廉并且产物均匀、粒径分布窄和纯度高等突出优点,已经在无机纳米材料制备领域中显示出独特的魅力。因此,本论文的工作是运用超声化学法合成有广泛应用前景的稀土纳米材料,对产物的形貌和粒径进行有效的调控,研究和分析其形成机理,并进一步考察其形貌、结构与性能之间的相互关系。 在本论文中,我们研究的体系集中在稀土磷酸盐、稀土氟化物和稀土钒酸盐三类纳米材料。 采用超声化学法得到的CePO4:Tb和CePO4:Tb/LaPO4(核/壳)纳米棒结晶完好,具有CePO4体材料的六方相结构。CePO4:Tb纳米棒直径为10-30 nm,长度为200 nm,CePO4:Tb/LaPO4(核/壳)纳米棒的LaPO4壳的厚度为2-10 nm。CePO4:Tb和CePO4:Tb/LaPO4(核/壳)纳米棒均具有Ce3+ (5d - 4f)和Tb3+ 5D4-7FJ(J = 6-3)的特征发射。与CePO4:Tb纳米棒核相比,CePO4:Tb/LaPO4(核/壳)纳米棒的光谱强度及荧光寿命均有较大的提高,这是由于形成核/壳结构后发光中心镧系金属离子与表面淬灭中心的距离增大,减少了能量传递过程中非辐射复合的路径,使能量淬灭受到抑制。 采用简单、快速、无模板辅助的超声化学法合成了稀土氟化物,并对产物的形貌和粒径进行了有效的调控。通过应用不同氟源(KBF4、NaF和NH4F)选择性合成了具有不同形貌的CeF3纳米材料,如片状、棒状和颗粒状。对具有不同形貌的CeF3样品进行了UV-Vis吸收光谱和荧光光谱测试和比较。研究结果表明不同形貌的样品,它们的光学性质存在很大差异,这说明纳米材料的光学性质与其形貌、粒径、晶体结构等因素有密切的关系。得到的EuF3单晶纳米材料具有三维花状形貌。这些纳米花的外形为球状,平均直径为0.9 μm-1.0 μm,每个花瓣的厚度约为0.14 μm。在其他实验条件不变的情况下,采用搅拌法而不经过超声辐射的对比实验只能得到二维纳米片,这表明超声辐射对花状EuF3的形成起到了至关重要的作用。基于不同反应时间的实验结果,我们提出了这种三维花状EuF3纳米材料可能的形成机理。 采用超声化学法选择性地合成了介孔及棒状CeVO4和纺锤状的YVO4:Eu3+ 纳米材料。CeVO4纳米棒的平均直径为5 nm,长度为150 nm。介孔CeVO4材料的比表面积较高(122 m2•g-1),孔径分布窄,其催化性能有望得到提高。纺锤状的YVO4:Eu3+ 纳米粒子具有四方相锆石结构,其直径为90-150 nm,长度为250-300 nm。超声辐射对样品的形貌起着关键作用,在其他反应条件不变,未采用超声辐射的情况下只能得到团聚严重的纳米颗粒。荧光测试表明,纺锤状YVO4:Eu样品表现为Eu3+ 5D0-7FJ(J = 1- 4)的特征跃迁,以5D0-7F2电偶极跃迁(614nm)为最强峰,属于红光发射。
Resumo:
本文对1-辛基-3-甲基咪唑六氟磷酸盐离子液体([C8mim]PF6)在包头稀土矿分离钍以及攀西矿分离铈工艺中的应用作了初步探索。论文首先研究了伯胺N1923溶于离子液体对硫酸体系钍的萃取分离行为,考察了酸度、盐析剂浓度、萃取剂浓度等对N1923/IL萃取钍的影响,并与庚烷体系的萃取规律作了对比。在此基础上对萃取机理进行了探讨,提出了不同于分子溶剂体系的萃取机理,认为N1923/IL在水相有硫酸钠作为盐析剂时对钍的萃取为“胶束增溶”萃取机理。此外,钍对稀土的分离考察结果认为,虽然N1923/IL对钍的萃取效率降低,但在一定条件下钍对稀土仍能保持较高的分离系数。由此本文对N1923/IL应用于钍的分离实践作了初步评估。 论文的另外一部分工作研究了纯[C8mim]PF6及其与2-乙基己基膦酸二(2-乙基己基)酯(DEHEHP)的混合体系对硝酸铈(IV)的萃取性能。研究发现纯[C8mim]PF6本身对硝酸铈(IV)有良好的萃取选择性,机理考察结果认为铈(IV)的萃取是由于Ce4+离子在富硝酸根溶液中形成络阴离子Ce(NO3)62-并与离子液体的阴离子PF6—发生交换的结果。一种新型含铈离子液体[C8mim]2Ce(NO3)6的合成进一步证实了这一机理。反萃考察发现被萃入离子液相的铈(IV)用水可完全反萃,且萃取和反萃过程中因离子交换机理导致的离子液体流失可以通过添加适量离子液体组分的方法予以抑制。此外,本文考察了DEHEHP溶于[C8mim]PF6对于含氟硝酸体系铈(IV)的萃取行为,发现在一定条件下DEHEHP对铈(IV)的萃取能获得与分子溶剂中等同的萃取机理。在此基础上,采用DEHEHP/IL从氟碳铈矿分解液中进行分离铈和氟的研究,获得纯度为99.9%以上的纳米CeF3产品。由此我们提出一个将离子液体应用于攀西氟碳铈矿铈钍稀土分离流程的模型,为离子液体在稀土清洁分离流程中实现溶剂绿色化的目标提供了一个范例。
Resumo:
目前,纳米材料已经应用于很多医药和生物领域,诸如临床诊断、药物传送、体内体外荧光标记等。稀土离子掺杂的纳米材料因其独特的发光性质已被认为是有前景的生物荧光标记,二氧化硅作为环境友好发光材料也受到越来越多的重视。本论文合成稀土离子掺杂的下转换和上转换发光纳米材料,并进行表面功能化,使之连接生物药物小分子,以期作为荧光标记。同时采用不同方法制备不同大小的二氧化硅球,并研究其发光性质。 采用多醇法成功地制备出结晶程度高的CeF3:Tb3+纳米粒子。氧化硅和胺基硅烷包覆使纳米粒子具有胺基功能化,然后通过SOCl2成功地活化生物素使之连接到纳米粒子上并随之与亲合素键合。胺基功能化的CeF3:Tb3+ 纳米粒子发光产生严重的猝灭,而生物分子与纳米粒子结合后发光得到很大程度上的恢复。生物功能化的CeF3:Tb3+ 纳米粒子能很好地分散在水中,为这些CeF3:Tb3+ 纳米粒子作为生物荧光探针奠定了基础。同时以P123为结构导向剂,介孔氧化硅成功地包覆CeF3:Tb3+ 纳米粒子。介孔氧化硅层存在部分有序的六方介孔体系和部分微孔结构,该复合物保持绿色荧光性质并具有相当大的孔容和大的表面积。布洛芬能载入复合物的孔道中,在24 h内释放完全。因此,这类复合物可以在靶向的药物传送体系中具有潜在的应用价值。 利用多醇法制备出NaYF4:Yb3+, Er3+ 纳米粒子。NaYF4:Yb3+, Er3+ 纳米粒子进行胺基功能化,并通过氧化寡糖链成功地活化亲合素,使之连接到胺基功能化的纳米粒子上。生物功能化的 NaYF4:Yb3+, Er3+纳米粒子仍保持较好的上转换发光性质,可以作为生物体系的荧光探针。另外用 P123作为结构导向剂和助表面活性剂PVP 或 TMB 成功地使NaYF4:Yb3+, Er3+ 纳米粒子包覆介孔氧化硅。外层氧化硅层有介孔结构。该复合物保持红色荧光性质,并具有大的孔容、表面积。布洛芬能载入复合物的孔道中,在12 h内完全释放。 通过高温溶剂法合成出YVO4:Eu3+ 纳米粒子。粒子结晶程度高,为椭球形状,长轴为80 nm,短轴为43 nm。YVO4:Eu3+ 纳米粒子的荧光发射跃迁主要源于5D0能级。FT-IR 谱和 XPS 谱表明纳米粒子表面的配体为油酸和油胺分子。Eu3+ (5D0 level) 寿命因表面有机配体的存在比体材料的寿命短。 成功地制备出不同大小的纳米至亚微米尺度且具有发光性能的单分散二氧化硅球,其尺寸随胺基浓度的增加而增大。烧结后粒子仍保持单分散性,但其尺寸缩小。烧结后的二氧化硅球含有C杂质。亚微米尺度的二氧化硅球的发射带最大值随氨丙基三乙氧基硅烷(APTES)浓度的增加而红移,但是纳米尺度的二氧化硅球的发射带最大值红移更大。单分散二氧化硅球发光原因归于二氧化硅结构中存在的碳和氧缺陷。
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.