436 resultados para CANALITH REPOSITIONING MANEUVER
Resumo:
A Vertigem Posicional Paroxística Benigna (VPPB) é caracterizada por tontura rotatória com duração de segundos e tratada com manobras cefálicas. Para sistematizar a conduta e conduzir os clínicos no atual conhecimento no seu controle, sociedades internacionais desenvolveram diretrizes. OBJETIVO: Discutir de forma prática e didática o estado da arte da abordagem atualmente disponível para VPPB. MATERIAL E MÉTODOS: Revisão assistemática com análise crítica comparando os resultados de duas recentes diretrizes internacionais a respeito da avaliação e controle da VPPB. Uma pesquisa foi elaborada pela American Academy of Otolaryngology (AAO-HNS) e a outra preparada pela American Academy of Neurology (AAN). Os tópicos em comum foram separados em tabelas comparativas. RESULTADOS: As diretrizes apresentaram diferenças quanto à metodologia. Apenas o artigo da AAO-HNS abordou sobre diagnóstico, recomendando o teste de Dix-Hallpike. Quanto aos tratamentos abordados, apenas a Reposição Canalítica, Manobra de Semont e a Reabilitação Vestibular tiveram estudos suficientes para receber recomendações. CONCLUSÃO: As duas diretrizes apresentaram os respaldos científicos necessários para os profissionais que atuam no diagnóstico e controle da VPPB, porém o resultado do grupo multidisciplinar da AAO-HNS foi mais abrangente e com qualidade superior.
Resumo:
Objective. To evaluate the effectiveness of a canalith-repositioning procedure in postural control of older patients with idiopathic benign paroxysmal positional vertigo (BPPV). Study Design. Prospective clinical trial. Setting. A tertiary referral center. Methods. A 9-month follow-up survey with a prospective design was conducted among 33 older patients with BPPV. Patients underwent static posturography (Balance Rehabilitation Unit [BRU]) and were administered the Dizziness Handicap Inventory (DHI) before and after the maneuver. After the treatment, they were compared with 33 healthy older subjects. The posturography parameters were the limit of stability (LOS), the center of body-pressure area (COP), and the velocity of oscillation (VOS) under conditions of visual, somatosensory, and visual-vestibular conflict. Results. One canalith-repositioning procedure relieved most patients' complaints (54.5%), and 100% were relieved with 1 to 3 maneuvers. Total DHI score and all subscales improved after treatment (P < .01). The LOS values pretreatment (mean [SD] 134.27 [55.32] cm(2)) and posttreatment (181.03 [47.79] cm(2)) were significantly different (P < .01). Comparative analysis of COP values showed a relevant statistical difference in 8 of 10 postmaneuver conditions (P < .01). The postmaneuver VOS showed a significant difference under 7 conflict conditions. There were no differences between the healthy older subjects and treated patients for all VOS values under all conditions and for COP values under 9 conditions. Conclusion. The canalith-repositioning procedure promotes remission of symptoms, an increase in LOS, and improvement in postural control under conditions of somatosensory and visual conflict and visual-vestibular interaction.
Resumo:
Benign Paroxysmal Positional Vertigo is the most common peripheral vestibular disorder, especially in the elderly and presents as the predominant etiology in this population of the degeneration of the utricular macula. Aim: To compare the effectiveness of the approaches after Epley maneuver. Study Design: longitudinal cohort. Materials and Methods: The study included 53 volunteers with Benign Paroxysmal Positional Vertigo of the posterior semicircular canal, divided into Group 1, who underwent Epley maneuver associated with the use of neck collar and post-maneuver instructions, Group 2 underwent the Epley maneuver without the use cervical collar and/or post-maneuver restrictions, and Group 3 underwent the Epley maneuver associated with the use of a mini vibrator, without the use of neck collar and/or post-maneuver restrictions. Results: In the three groups, the number of Epley maneuvers ranged from one to three. We employed the Brazilian Dizziness Handicap Inventory - pre- and post-treatment and observed a statistically significant difference on most scores pre- and post-treatment for both groups. Conclusion: Regardless of the post Epley maneuver treatment selected for the treatment of Benign Paroxysmal Positional Vertigo, it was effective when comparing the Brazilian Dizziness Handicap Inventory pre- and post-treatment.
Resumo:
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Resumo:
PURPOSE: To analyze the effects of detachment and repositioning of the medial pterygoid muscle on the growth of the maxilla and mandible of young rats through cephalometry. METHODS: Thirty one-month-old Wistar rats were used, distributed into three groups: experimental, sham-operated and control. In the experimental group, unilateral detachment and repositioning of the medial pterygoid muscle was performed. The sham-operated group only underwent surgical access, and the control group did not undergo any procedure. The animals were sacrificed at the age of three months. Their soft tissues were removed and the mandible was disarticulated. Radiographs of the skull in axial projection and the hemimandibles in lateral projection were obtained, and cephalometry was performed. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There were significant differences in the length of the mandible relative to the angular process in the experimental group and in the height of the mandibular body in the sham-operated group. CONCLUSION: The experimental detachment and repositioning of the medial pterygoid muscle during the growth period in rats affected the growth of the angle region, resulting in asymmetry of the mandible.
Resumo:
Introduction: Laparoscopic liver resections are becoming a common procedure, and bleeding remains the major concern during parenchymal transection. Total vascular inflow occlusion can be performed, but ischemic reperfusion injuries can lead to postoperative morbidity. On the other hand, hemihepatic inflow occlusion, leading to hemiliver ischemia, decreases the amount of liver parenchyma submitted to reperfusion damage and offers the advantage of reduced blood loss. Objective: The aim of this work was to describe our experience with laparoscopic the half-Pringle maneuver for segmentar or nonanatomic liver resctions. Patients and Methods: Eight patients submitted to laparoscopic liver resection in a single tertiary center. Results: There were 5 women and 3 men with a mean age of 40.2 years (range, 26-54). Mean tumor size was 4.1 cm (range, 2.6-6.0), and mean hospital stay was 3.1 days (1-5). There were 3 liver adenomas, 2 hepatocellular carcinomas, 1 metastatic melanoma, 1 metastatic colorectal carcinoma, and 1 peripheral colangiocarcinoma. No postoperative complications or mortalities were observed. Conclusions: Results demonstrate that laparoscopic liver resection with the half-Pringle maneuver is feasible and safe and may be included in the technical armamentarium of laparoscopic liver resections for a selected group of patients.
Resumo:
Background: Treatment of excessive gingival display usually involves procedures such as Le Fort impaction or maxillary gingivectomies. The authors propose an alternative technique that reduces the muscular function of the elevator of the upper lip muscle and repositioning of the upper lip. Methods: Fourteen female patients with excessive gingival exposure were operated on between February of 2008 and March of 2009. They were filmed before and at least 6 months after the procedure. They were asked to perform their fullest smile, and the maximum gingival exposures were measured and analyzed using ImageJ software. Patients were operated on under local anesthesia. Their gingival mucosa was freed from the maxilla using a periosteum elevator. Skin and subcutaneous tissue were dissected bluntly from the underlying musculature of the upper lip. A frenuloplasty was performed to lengthen the upper lip. Both levator labii superioris muscles were dissected and divided. Results: The postoperative course was uneventful in all of the patients. The mean gingival exposure before surgery was 5.22 +/- 1.48 mm; 6 months after surgery, it was 1.91 +/- 1.50 mm. The mean gingival exposure reduction was 3.31 +/- 1.05 mm (p < 0.001), ranging from 1.59 to 4.83 mm. Conclusion: This study shows that the proposed technique was efficient in reducing the amount of exposed gum during smile in all patients in this series. (Plast. Reconstr. Surg. 126: 1014, 2010.)
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
Objective: In acute lung injury, recruitment maneuvers have been used to open collapsed lungs and set positive end-expiratory pressure, but their effectiveness may depend on the degree of lung injury. This study uses a single experimental model with different degrees of lung injury and tests the hypothesis that recruitment maneuvers may have beneficial or deleterious effects depending on the severity of acute lung injury. We speculated that recruitment maneuvers may worsen lung mechanical stress in the presence of alveolar edema. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-six Wistar rats randomly divided into three groups (n = 12 per group). Interventions: In the control group, saline was intraperitoneally injected, whereas moderate and severe acute lung injury animals received paraquat intraperitoneally (20 mg/kg [moderate acute lung injury] and 25 mg/kg [severe acute lung injury]). After 24 hrs, animals were further randomized into subgroups (n = 6/each) to be recruited (recruitment maneuvers: 40 cm H(2)O continuous positive airway pressure for 40 secs) or not, followed by 1 hr of protective mechanical ventilation (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H(2)O). Measurements and Main Results: Only severe acute lung injury caused alveolar edema. The amounts of alveolar collapse were similar in the acute lung injury groups. Static lung elastance, viscoelastic pressure, hyperinflation, lung, liver, and kidney cell apoptosis, and type 3 procollagen and interleukin-6 mRNA expressions in lung tissue were more elevated in severe acute lung injury than in moderate acute lung injury. After recruitment maneuvers, static lung elastance, viscoelastic pressure, and alveolar collapse were lower in moderate acute lung injury than in severe acute lung injury. Recruitment maneuvers reduced interleukin-6 expression with a minor detachment of the alveolar capillary membrane in moderate acute lung injury. In severe acute lung injury, recruitment maneuvers were associated with hyperinflation, increased apoptosis of lung and kidney, expression of type 3 procollagen, and worsened alveolar capillary injury. Conclusions: In the presence of alveolar edema, regional mechanical heterogeneities, and hyperinflation, recruitment maneuvers promoted a modest but consistent increase in inflammatory and fibrogenic response, which may have worsened lung function and potentiated alveolar and renal epithelial injury. (Crit Care Med 2010; 38: 2207-2214)
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
OCEANS, 2001. MTS/IEEE Conference and Exhibition (Volume:2 )
Resumo:
OCEANS 2003. Proceedings (Volume:1 )
Resumo:
This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions.