907 resultados para Bush Hill Basin
Resumo:
本文通过对墨西哥湾Bush Hill 的5个冷泉碳酸盐岩样品和Alaminos Canyon 的1个冷泉碳酸盐岩样品的总有机质含量、可溶有机质含量、饱和烃、芳烃、脂肪酸、δ13C组成分布特征和部分地球化学参数的研究,探讨了冷泉碳酸盐岩中有机质来源、成熟度和沉积环境。 Bush Hill的冷泉碳酸盐岩样品的总有机碳为0.78-9.02%,可溶有机质含量5.77-65.06mg/g。总有机碳达9.02%的GC-B样品高碳数正构烷烃奇偶优势明显,存在荧蒽、芘和苝系列化合物,表明该样品有陆源物质的输入,并明显受深部渗漏原油的影响,其中烷烃的δ13C为-27.64~-32.36‰,正构脂肪酸δ13C为-26.52~-39.99‰,与现代菌藻类及下伏油气藏的δ13C值(-27~-31‰)相似,表明样品中的有机质主体可能来源于深部油气藏。其余4个Bush Hill冷泉碳酸盐岩样品和1个Alaminos Canyon冷泉碳酸盐岩样品正构烷烃的低碳优势明显,而奇偶优势不明显,低碳数分布的环己烷和长链烷基苯,以及三芳甾烷和甲基三芳甾烷的存在,推断这些样品的母质以菌藻类来源为主。 所有分析样品的甾烷成熟度参数C29ββ/(ββ+αα)为0.28-0.40,C2920S/(20S + 20R)为0.42-0.61、及C20-C21三芳孕甾烷TA(Ⅰ)/C26-C28三芳甾烷TA(Ⅱ)为0.49都说明样品的有机质成熟度较低,。 AC深水区AC-E样品UCM隆起不明显,Bush Hill浅水区样品(GC-B、GC-D、GC-F、GC-G,GC-H)UCM隆起均十分明显,这种隆起的形成是因为正烷烃、甚至五环三萜烷遭受生物降解。被微生物降解的正构烷烃与未被降解的环烷烃和支链烷烃等形成不能被溶解的复杂混合物(UCM)。因此,UCM隆起通常被认为是有机质遭受生物降解最直接的证据。深水区AC-E和Bush Hill浅水区GC-F样品中芴、氧芴和硫芴之间的丰度关系为硫芴﹥芴﹥氧芴,表明其为弱氧化-弱还原的沉积环境。具有较负碳同位素组成(-63.95‰ ~ -50.48‰)的异构/反异构脂肪酸是硫酸盐还原细菌的典型生物标志化合物,进一步证实冷泉碳酸盐岩的形成与甲烷缺氧氧化作用有关。 关键词:墨西哥湾 冷泉碳酸盐岩 有机质组成分布 单体烃碳同位素 沉积环境
Resumo:
The grain sizes of gas hydrate crystallites are largely unknown in natural samples. Single grains are hardly detectable with electron or optical microscopy. For the first time, we have used high-energy synchrotron diffraction to determine grain sizes of six natural gas hydrates retrieved from the Bush Hill region in the Gulf of Mexico and from ODP Leg 204 at the Hydrate Ridge offshore Oregon from varying depth between 1 and 101 metres below seafloor. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. Gas hydrate grain sizes were measured at the Beam Line BW 5 at the HASYLAB/Hamburg. A 'moving area detector method', originally developed for material science applications, was used to obtain both spatial and orientation information about gas hydrate grains within the sample. The gas hydrate crystal sizes appeared to be (log-)normally distributed in the natural samples. All mean grain sizes lay in the range from 300 to 600 µm with a tendency for bigger grains to occur in greater depth. Laboratory-produced methane hydrate, aged for 3 weeks, showed half a log-normal curve with a mean grain size value of c. 40 µm. The grains appeared to be globular shaped.
Resumo:
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct-Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg**-1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.