842 resultados para Branching Processes with Immigration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we indicate how integer-valued autoregressive time series Ginar(d) of ordre d, d ≥ 1, are simple functionals of multitype branching processes with immigration. This allows the derivation of a simple criteria for the existence of a stationary distribution of the time series, thus proving and extending some results by Al-Osh and Alzaid [1], Du and Li [9] and Gauthier and Latour [11]. One can then transfer results on estimation in subcritical multitype branching processes to stationary Ginar(d) and get consistency and asymptotic normality for the corresponding estimators. The technique covers autoregressive moving average time series as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 62M05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention has recently focussed on stochastic population processes that can undergo total annihilation followed by immigration into state j at rate αj. The investigation of such models, called Markov branching processes with instantaneous immigration (MBPII), involves the study of existence and recurrence properties. However, results developed to date are generally opaque, and so the primary motivation of this paper is to construct conditions that are far easier to apply in practice. These turn out to be identical to the conditions for positive recurrence, which are very easy to check. We obtain, as a consequence, the surprising result that any MBPII that exists is ergodic, and so must possess an equilibrium distribution. These results are then extended to more general MBPII, and we show how to construct the associated equilibrium distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we consider systems of finitely many particles moving on paths given by a strong Markov process and undergoing branching and reproduction at random times. The branching rate of a particle, its number of offspring and their spatial distribution are allowed to depend on the particle's position and possibly on the configuration of coexisting particles. In addition there is immigration of new particles, with the rate of immigration and the distribution of immigrants possibly depending on the configuration of pre-existing particles as well. In the first two chapters of this work, we concentrate on the case that the joint motion of particles is governed by a diffusion with interacting components. The resulting process of particle configurations was studied by E. Löcherbach (2002, 2004) and is known as a branching diffusion with immigration (BDI). Chapter 1 contains a detailed introduction of the basic model assumptions, in particular an assumption of ergodicity which guarantees that the BDI process is positive Harris recurrent with finite invariant measure on the configuration space. This object and a closely related quantity, namely the invariant occupation measure on the single-particle space, are investigated in Chapter 2 where we study the problem of the existence of Lebesgue-densities with nice regularity properties. For example, it turns out that the existence of a continuous density for the invariant measure depends on the mechanism by which newborn particles are distributed in space, namely whether branching particles reproduce at their death position or their offspring are distributed according to an absolutely continuous transition kernel. In Chapter 3, we assume that the quantities defining the model depend only on the spatial position but not on the configuration of coexisting particles. In this framework (which was considered by Höpfner and Löcherbach (2005) in the special case that branching particles reproduce at their death position), the particle motions are independent, and we can allow for more general Markov processes instead of diffusions. The resulting configuration process is a branching Markov process in the sense introduced by Ikeda, Nagasawa and Watanabe (1968), complemented by an immigration mechanism. Generalizing results obtained by Höpfner and Löcherbach (2005), we give sufficient conditions for ergodicity in the sense of positive recurrence of the configuration process and finiteness of the invariant occupation measure in the case of general particle motions and offspring distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: primary 60J80; secondary 60J85, 92C37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper concentrates on investigating ergodicity and stability for generalised Markov branching processes with resurrection. Easy checking criteria including several clear-cut corollaries are established for ordinary and strong ergodicity of such processes. The equilibrium distribution is given in an elegant closed form for the ergodic case. The probabilistic interpretation of the results is clear and thus explained.