881 resultados para Brain sMRI data
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
We report the first 3D maps of genetic effects on brain fiber complexity. We analyzed HARDI brain imaging data from 90 young adult twins using an information-theoretic measure, the Jensen-Shannon divergence (JSD), to gauge the regional complexity of the white matter fiber orientation distribution functions (ODF). HARDI data were fluidly registered using Karcher means and ODF square-roots for interpol ation; each subject's JSD map was computed from the spatial coherence of the ODFs in each voxel's neighborhood. We evaluated the genetic influences on generalized fiber anisotropy (GFA) and complexity (JSD) using structural equation models (SEM). At each voxel, genetic and environmental components of data variation were estimated, and their goodness of fit tested by permutation. Color-coded maps revealed that the optimal models varied for different brain regions. Fiber complexity was predominantly under genetic control, and was higher in more highly anisotropic regions. These methods show promise for discovering factors affecting fiber connectivity in the brain.
Resumo:
Vector space models (VSMs) represent word meanings as points in a high dimensional space. VSMs are typically created using a large text corpora, and so represent word semantics as observed in text. We present a new algorithm (JNNSE) that can incorporate a measure of semantics not previously used to create VSMs: brain activation data recorded while people read words. The resulting model takes advantage of the complementary strengths and weaknesses of corpus and brain activation data to give a more complete representation of semantics. Evaluations show that the model 1) matches a behavioral measure of semantics more closely, 2) can be used to predict corpus data for unseen words and 3) has predictive power that generalizes across brain imaging technologies and across subjects. We believe that the model is thus a more faithful representation of mental vocabularies.
Resumo:
An abnormality in neurodevelopment is one of the most robust etiologic hypotheses in schizophrenia (SZ). There is also strong evidence that genetic factors may influence abnormal neurodevelopment in the disease. The present study evaluated in SZ patients, whose brain structural data had been obtained with magnetic resonance imaging (MRI), the possible association between structural brain measures, and 32 DNA polymorphisms,located in 30 genes related to neurogenesis and brain development. DNA was extracted from peripheral blood cells of 25 patients with schizophrenia, genotyping was performed using diverse procedures, and putative associations were evaluated by standard statistical methods (using the software Statistical Package for Social Sciences - SPSS) with a modified Bonferroni adjustment. For reelin (RELN), a protease that guides neurons in the developing brain and underlies neurotransmission and synaptic plasticity in adults, an association was found for a non-synonymous polymorphism (Va1997Leu) with left and right ventricular enlargement. A putative association was also found between protocadherin 12 (PCDH12), a cell adhesion molecule involved in axonal guidance and synaptic specificity, and cortical folding (asymmetry coefficient of gyrification index). Although our results are preliminary, due to the small number of individuals analyzed, such an approach could reveal new candidate genes implicated in anomalous neurodevelopment in schizophrenia. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anestheticsrnsevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) inrnmurine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression ofrnZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled corticalrnimpact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours afterrnexposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthyrnmice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water contentrnincreased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expressionrnwas significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analysesrnrevealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The studyrndemonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed tornmodulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence thernbarrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Futurernresearch is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.
Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis
Resumo:
Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information.
Resumo:
Objectives: Neurofunctional alterations are correlates of vulnerability to psychosis, as well as of the disorder itself. How these abnormalities relate to different probabilities for later transition to psychosis is unclear. We investigated vulnerability- versus disease-related versus resilience biomarkers of psychosis during working memory (WM) processing in individuals with an at-risk mental state (ARMS). Experimental design: Patients with “first-episode psychosis” (FEP, n = 21), short-term ARMS (ARMS-ST, n = 17), long-term ARMS (ARMS-LT, n = 16), and healthy controls (HC, n = 20) were investigated with an n-back WM task. We examined functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) data in conjunction using biological parametric mapping (BPM) toolbox. Principal observations: There were no differences in accuracy, but the FEP and the ARMS-ST group had longer reaction times compared with the HC and the ARMS-LT group. With the 2-back > 0-back contrast, we found reduced functional activation in ARMS-ST and FEP compared with the HC group in parietal and middle frontal regions. Relative to ARMS-LT individuals, FEP patients showed decreased activation in the bilateral inferior frontal gyrus and insula, and in the left prefrontal cortex. Compared with the ARMS-LT, the ARMS-ST subjects showed reduced activation in the right inferior frontal gyrus and insula. Reduced insular and prefrontal activation was associated with gray matter volume reduction in the same area in the ARMS-LT group. Conclusions: These findings suggest that vulnerability to psychosis was associated with neurofunctional alterations in fronto-temporo-parietal networks in a WM task. Neurofunctional differences within the ARMS were related to different duration of the prodromal state and resilience factors
Resumo:
We establish a fundamental equivalence between singular value decomposition (SVD) and functional principal components analysis (FPCA) models. The constructive relationship allows to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a functional mixed effect model is fitted to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed.
Resumo:
Concentrations of corticosterone in brain areas of TO strain mice were measured by radioimmunoassay. The studies examined the effects of routine laboratory maneuvers, variation during the circadian peak, adrenalectomy, social defeat and acute injections of alcohol on these concentrations. Brief handling of mice increased corticosterone levels in plasma but not in striatum and reduced those in the hippocampus. Single injections of isotonic saline raised the plasma concentrations to a similar extent as the handling, but markedly elevated concentrations in the three brain regions. Five minutes exposure to a novel environment increased hippocampal and cerebral cortical corticosterone levels and striatal concentrations showed a larger rise. However, by 30 min in the novel environment, plasma concentrations rose further while those in striatum and cerebral cortex fell to control levels and hippocampal corticosterone remained elevated. Over the period of the circadian peak the hippocampal and striatal concentrations paralleled the plasma concentrations but cerebral cortical concentrations showed only small changes. Adrenalectomy reduced plasma corticosterone concentrations to below detectable levels after 48 h but corticosterone levels were only partially reduced in the hippocampus and striatum and remained unchanged in the cerebral cortex. Single or repeated social defeat increased both brain and plasma concentrations after 1 h. Acute injections of alcohol raised the regional brain levels in parallel with plasma concentrations. The results show that measurements of plasma concentrations do not necessarily reflect the levels in brain. The data also demonstrate that corticosterone levels can change differentially in specific brain regions. These results, and the residual hormone seen in the brain after adrenalectomy, are suggestive evidence for a local origin of central corticosterone.
Resumo:
Momentary brain electric field configurations are manifestations of momentary global functional states of the brain. Field configurations tend to persist over some time in the sub-second range (“microstates”) and concentrate within few classes of configurations. Accordingly, brain field data can be reduced efficiently into sequences of re-occurring classes of brain microstates, not overlapping in time. Different configurations must have been caused by different active neural ensembles, and thus different microstates assumedly implement different functions. The question arises whether the aberrant schizophrenic mentation is associated with specific changes in the repertory of microstates. Continuous sequences of brain electric field maps (multichannel EEG resting data) from 9 neuroleptic-naive, first-episode, acute schizophrenics and from 18 matched controls were analyzed. The map series were assigned to four individual microstate classes; these were tested for differences between groups. One microstate class displayed significantly different field configurations and shorter durations in patients than controls; degree of shortening correlated with severity of paranoid symptomatology. The three other microstate classes showed no group differences related to psychopathology. Schizophrenic thinking apparently is not a continuous bias in brain functions, but consists of intermittent occurrences of inappropriate brain microstates that open access to inadequate processing strategies and context information
Resumo:
Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.
Resumo:
Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS and proceeding throughout the disease course, may be an accurate measure of neurodegeneration and tissue damage. There are a number of magnetic resonance imaging-based methods for determining global or regional brain volume, including cross-sectional (e.g. brain parenchymal fraction) and longitudinal techniques (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially in a disease with complex pathological substrates such as MS. Brain volume loss has been correlated with disability progression and cognitive impairment in MS, with the loss of grey matter volume more closely correlated with clinical measures than loss of white matter volume. Preventing brain volume loss may therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS.
Resumo:
Human emotions are essential for survival. They are vital for the satisfaction of basic needs, the regulation of personal life and successful integration into social structures. Depending on which aspect of an emotion is used in its definition, many different theories offer possible answers to the questions of what emotions are and how they can be distinguished. The systematic investigation of emotions in cognitive neuroscience is relatively new, and neuroimaging studies specifically focussing on the neural correlates of different categories of emotions are still lacking. Therefore, the current thesis aimed at investigating the behavioural and neurophysiological correlates of different human emotional levels and their interaction in healthy subjects. We differentiated between emotions according to their cerebral entry site and neural processing pathways: homeostatic emotions, which are elicited by metabolic changes and processed by the interoceptive system (such as thirst, hunger, and need for air), and sensory-evoked emotions, which are evoked by external inputs via the eyes, ears or nose, or their corresponding mental representations and processed in the brain as sensory perception (e.g. fear, disgust, or pride). Using functional magnetic resonance imaging (fMRI) and behavioural parameters, we examined both the specific neural underpinnings of a homeostatic emotion (thirst) and a sensory-evoked emotion (disgust), and their interaction in a situation of emotional rivalry when both emotions were perceived simultaneously. This thesis comprises three research articles reporting the results of this research. The first paper presents disgust-related brain imaging data in a thirsty and a satiated condition. We found that disgust mainly activated the anterior insular cortex. In the thirsty condition, however, we observed an interaction effect between disgust and thirst: when thirsty, the subjects rated the disgusting stimulus as less repulsive. On the neurobiological level, this reduction of subjective disgust was accompanied by significantly reduced neural activity in the insular cortex. These results provide new neurophysiological evidence for a hierarchical organization among homeostatic and sensory-evoked emotions, revealing that in a situation of emotional conflict, homeostatic emotions are prioritized over sensory-evoked emotions. In the second paper, findings on brain perfusion over four different thirst stages are reported, with a special focus on the parametric progression of thirst. Cerebral perfusion differences over all thirst stages were found in the posterior insular cortex. Taking this result together with the findings of the first paper, the insular cortex seems to be a key player in human emotional processing, since it comprises specific representations of homeostatic and sensory-evoked emotions and also represents the site of cortical interaction between the two levels of emotions. Finally, although this thesis focussed on the homeostatic modulation of disgust, we were also interested in whether dehydration modulates taste perception. The results of this behavioural experiment are described in the third paper, where we show that dehydration alters the perception of neutral taste stimuli.
Resumo:
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.
Resumo:
A complex set of axonal guidance mechanisms are utilized by axons to locate and innervate their targets. In the developing mouse forebrain, we previously described several midline glial populations as well as various guidance molecules that regulate the formation of the corpus callosum. Since agenesis of the corpus callosum is associated with over 50 different human congenital syndromes, we wanted to investigate whether these same mechanisms also operate during human callosal development. Here we analyze midline glial and commissural development in human fetal brains ranging from 13 to 20 weeks of gestation using both diffusion tensor magnetic resonance imaging and immunohistochemistry. Through our combined radiological and histological studies, we demonstrate the morphological development of multiple forebrain commissures/decussations, including the corpus callosum, anterior commissure, hippocampal commissure, and the optic chiasm. Histological analyses demonstrated that all the midline glial populations previously described in mouse, as well as structures analogous to the subcallosal sling and cingulate pioneering axons, that mediate callosal axon guidance in mouse, are also present during human brain development. Finally, by Northern blot analysis, we have identified that molecules involved in mouse callosal development, including Slit, Robo, Netrin1, DCC, Nfia, Emx1, and GAP-43, are all expressed in human fetal brain. These data suggest that similar mechanisms and molecules required for midline commissure formation operate during both mouse and human brain development. Thus, the mouse is an excellent model system for studying normal and pathological commissural formation in human brain development. (c) 2006 Wiley-Liss, Inc.