993 resultados para Bone defect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the [alpha]2[beta]1 integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing need for successful bone tissue engineering strategies and advanced biomaterials that mimic the structure and function of native tissues carry great promise. Successful bone repair approaches may include an osteoconductive scaffold, osteoinductive growth factors, cells with an osteogenic potential and capacity for graft vascularisation. To increase osteoinductivity of biomaterials, the local combination and delivery of growth factors has been developed. In the present study we investigated the osteogenic effects of calcium phosphate (CaP)-coated nanofiber mesh tube-mediated delivery of BMP-7 from a PRP matrix for the regeneration of critical sized segmental bone defects in a small animal model. Bilateral full-thickness diaphyseal segmental defects were created in twelve male Lewis rats and nanofiber mesh tubes were placed around the defect. Defects received either treatment with a CaP-coated nanofiber mesh tube (n = 6), an un-coated nanofiber mesh tube (n=6) a CaP-coated nanofiber mesh tube with PRP (n=6) or a CaP-coated nanofiber mesh tube in combination with 5 μg BMP-7 and PRP (n = 6). After 12 weeks, bone volume and biomechanical properties were evaluated using radiography, microCT, biomechanical testing and histology. The results demonstrated significantly higher biomechanical properties and bone volume for the BMP group compared to the control groups. These results were supported by the histological evaluations, where BMP group showed the highest rate of bone regeneration within the defect. In conclusion, BMP-7 delivery via PRP enhanced functional bone defect regeneration, and together these data support the use of BMP-7 in the treatment of critical sized defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the bone repair process in the maxillary sinus in monkeys treated with high-density porous polyethylene (Medpor)Methods: Four capuchin monkeys (Cebus apella) were submitted to bilateral horizontal osteotomies in the anterior wall of the maxillary sinus and divided into 2 groups: control group, left side with no implants, and porous polyethylene group, right side with Medpor. After a period of 145 days after implant placement, the maxillae were removed for histologic and histometric analyses.Results: Bone repair in osteotomized areas took place by connective tissue in 58.5% and 58.7% in the control group and the porous polyethylene group, respectively. In the contact surface with Medpor, bone repair occurred in 41.3%.Conclusions: Medpor was not reabsorbed within the period of this study and allowed bone repair surrounding it. The porous polyethylene constitutes a feasible alternative for bone defect reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: (1) To evaluate the intraobserver agreement related to image interpretation and (2) to compare the accuracy of 100%, 200% and 400% zoomed digital images in the detection of simulated periodontal bone defects.Methods: Periodontal bone defects were created in 60 pig hemi-mandibles with slow-speed burs 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm and 3.0 mm in diameter. 180 standardized digital radiographs were made using Schick sensor and evaluated at 100%, 200% and 400% zooming. The intraobserver agreement was estimated by Kappa statistic (kappa). For the evaluation of diagnostic accuracy receiver operating characteristic (ROC) analysis was performed followed by chi-square test to compare the areas under ROC curves according to each level of zooming.Results: For 100%, 200% and 400% zooming the intraobserver agreement was moderate (kappa = 0.48, kappa = 0.54 and kappa = 0.43, respectively) and there were similar performances in the discrimination capacity, with ROC areas of 0.8611 (95% CI: 0.7660-0.9562), 0.8600 (95% CI: 0.7659-0.9540), and 0.8368 (95% CI: 0.7346-0.9390), respectively, with no statistical significant differences (chi(2)-test; P = 0.8440).Conclusions: A moderate intraobserver agreement was observed in the classification of periodontal bone defects and the 100%, 200% and 400% zoomed digital images presented similar performances in the detection of periodontal bone defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tibia segmental defect healing in sheep were clinically, radiographically and histologically evaluated. Twelve young sheep aged four to five months were divided into two groups, G1 and G2. A 3.5 cm long segmental defect was created in the right tibial diaphysis with maintenance of the periosteum. The bone defects in both groups were stabilized with a bone plate combined with a titanium cage. In G1 the cage was filled with pieces of autologous cortical bone graft. In G2 it was filled with a composite biomaterial which consisted of inorganic bovine bone, demineralized bovine bone, a pool of bovine bone morphogenetic proteins bound to absorbable ultra-thin powdered hydroxyapatiteand bone-derived denaturized collagen. Except for one G1 animal, all of them showed normal limb function 60 days after surgery. Radiographic examination showed initial formation of periosteal callus in both groups at osteo-tomy sites, over the plate or cage 15 days postoperatively. At 60 and 90 days callus remodeling occurred. Histological and morphometric analysis at 90 days after surgery showed that the quantity of implanted materials in G1 and G2 were similar, and the quantity of new bone formation was less (p = 0.0048) and more immature in G1 than G2, occupying 51 +/- 3.46% and 62 +/- 6.26% of the cage space, respectively. These results suggest that the composite biomaterial tested was a good alternative to autologous cartical bone graft in this experimental ovine tibial defect. However, additional evaluation is warranted prior to its clinical usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To compare simulated periodontal bone defect depth measured in digital radiographs with dedicated and non-dedicated software systems and to compare the depth measurements from each program with the measurements in dry mandibles.Methods: Forty periodontal bone defects were created at the proximal area of the first premolar in dry pig mandibles. Measurements of the defects were performed with a periodontal probe in the dry mandible. Periapical digital radiographs of the defects were recorded using the Schick sensor in a standardized exposure setting. All images were read using a Schick dedicated software system (CDR DICOM for Windows v.3.5), and three commonly available non-dedicated software systems (Vix Win 2000 v.1.2; Adobe Photoshop 7.0 and Image Tool 3.0). The defects were measured three times in each image and a consensus was reached among three examiners using the four software systems. The difference between the radiographic measurements was analysed using analysis of variance (ANOVA) and by comparing the measurements from each software system with the dry mandibles measurements using Student's t-test.Results: the mean values of the bone defects measured in the radiographs were 5.07 rum, 5.06 rum, 5.01 mm and 5.11 mm for CDR Digital Image and Communication in Medicine (DICOM) for Windows, Vix Win, Adobe Photoshop, and Image Tool, respectively, and 6.67 mm for the dry mandible. The means of the measurements performed in the four software systems were not significantly different, ANOVA (P = 0.958). A significant underestimation of defect depth was obtained when we compared the mean depths from each software system with the dry mandible measurements (t-test; P congruent to 0.000).Conclusions: the periodontal bone defect measurements in dedicated and in three non-dedicated software systems were not significantly different, but they all underestimated the measurements when compared with the measurements obtained in the dry mandibles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of teeth-implant, mucosa-supported removable dentures for rehabilitation of partially edentulous patients involves highly complex biomechanical aspects. This type of prosthesis associates 3 kinds of support that react differently to the functional and parafunctional forces developed in the oral cavity. Although the construction of removable partial dentures may seem paradoxical when osseointegrated implants are placed, in some cases, this option is an excellent alternative to solve difficulties related to the anatomic, biologic, psychomotor, and financial conditions of the patient. This article reports on a case in which a teeth-implant, mucosa-supported removable partial denture was the option of choice for a patient with financial and anatomic limitations, having a large structural loss of the residual alveolar ridge caused by trauma by a gunshot injury at the mandible. The 5-year follow-up did not reveal any type of biomechanical or functional problem. Copyright © 2006 by Lippincott Williams and Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to compare polyurethanes containing castor oil (soft segment) in granular form compared to cancellous bone autograft applied to a segmental bone defect. Norfolk adult female rabbits - approximately 13 months of age with a mean body weight of 4.5 kg - are used. In both radial diaphyses, 1 cm osteoperiosteal segmental defects are created. The defect in the left radius is filled with the castor-oil-based polyurethane, and the right one, filled with cancellous bone autograft, collected from the left proximal humerus. The rabbits are euthanazed at 15, 30, 60, and 120 days postsurgery (5 animals/ period), for histological analyses. By radiographic analyses, at these time points, the bone regeneration is more evident and accelerated in the bone defects treated with the cancellous bone autograft. At 120 days postsurgery, the segmental bone defects treated with the cancellous bone autograft are totally reconstituted and remodeled, while the bone defects treated with polyurethane polymer have bone formation of 79%. Histological study shows that the polyurethane acts as a space filler, minimizing the local production of fibrous tissue. No granule degradation, resorption or any inflammatory reaction is detected. Thus, it is possible to conclude that the castor-oil-plant-based polyurethane - in the granule presentation - is biocompatible and osteointegrated, but does not show the same bone regeneration capacity as the cancellous bone autograft. © 2007 SAGE Publications.