964 resultados para Bond (masonry)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The purpose of this research was to analyze and measure, under optical microscopy, the hybrid layer thickness and resin tags length, as well as the microtensile bond strength of two conventional adhesive systems when applied to dry and moist dentinal substrate. Methods: Thirty-two extracted human molars were randomly distributed into four groups according to the adhesive systems (XP Bond and Prime&Bond 2.1) and moisture condition (dry and moist). In Groups I and II, XP adhesive system was applied on dry and moist dentin, respectively; while Groups III and IV received PB adhesive system, in the same way as was done in Groups I and II, respectively. After adhesive and restorative procedures, all specimens were sectioned along their long axes; one hemi-tooth sample was subjected to the microtensile bond strength test while the other was decalcified and serially sectioned into six micron thick slices and sequentially mounted on glass slides. These sections were stained by the Brown and Brenn method for posterior analysis and measurement of the hybrid layer and resin tags under a light microscope with a micrometric ocular 40/075. Results: Data were analyzed using two-way ANOVA and Tukey's test (α=0.05). For the variable hybrid layer thickness, XP showed no significant differences between dry and moist dentin (5.2 μm and 5.5 μm, respectively), but for PB, hybrid layer was significantly thicker for moist (4.0 μm) than for dry dentin (3.0 μm). For the variable resin tags length XP showed 17.9 μm length for dry dentin and 20.8 μm for moist dentin; PB 11.7 μm for dry and 12.69 μm for moist dentin;there was no significant differences between them, independent of the moisture condition. For the variable microtensile bond strength, XP showed 38.0 MPa for dry dentin and 44.5 MPa for moist dentin; and PB showed 22.7 MPa for dry dentin and 20.8 MPa for dry dentin no significant difference was observed between moist and dry dentin for XP (p=0.2) and PB (p=0.7), but XP was presented significantly higher bond strength values than PB in both moisture conditions (p=0.003 for dry and p=0.002 for moist). Conclusion: The two-step butanol-based etch-and-rinse adhesive XP Bond presented a superior behavior with regard to the hybrid layer thickness, length of resin tags and bond strength to dry and moist dentin substrates when compared with two-step acetone-based adhesive system Prime&Bond2.1. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Methods Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5 mM (0.004%) DMSO as additional primer for 30 s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. Results The use of 0.5 mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. Significance DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5 mM DMSO used for bonding. © 2013 Academy of Dental Materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Externally bonded strengthening of masonry structures using Fiber Reinforced Polymers (FRPs) has been accepted as a promising technique. Although the effectiveness of FRPs in improving the performance of masonry components has been extensively investigated, their long-term performance and durability remain poorly addressed. This paper, tackling one of the aspects related to durability of these systems, presents an experimental investigation on the effect of long-term (one year) water immersion on the performance of GFRP-strengthened bricks. The tests include materials' mechanical tests, as well as pull-off and single-lap shear bond tests, to investigate the changes in material properties and bond behavior with immersion time, respectively. The effect of mechanical surface treatment on the durability of the strengthened system as well as the reversibility of the degradation upon partial drying are also investigated. The experimental results are presented and critically discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of Near Surface Mounted (NSM) Fiber Reinforced Polymers (FRPs) for strengthening masonry structures can be a suitable substitute for Externally Bonded Reinforcement (EBR) technique. NSM technique has many advantages such as larger bonded area, better anchorage capacity, higher resistance, higher percentage exploitation of the FRP and reduced installation time. However, information regarding the effectiveness of this strengthening technique for masonry structures is scarce and characterization of the critical mechanisms such as bond behavior is necessary. This paper presents experimental investigation of the bond performance in NSM-strengthened brick specimens. CFRP laminates are used for NSM strengthening of masonry bricks with different bonded lengths. The bond between FRP and masonry substrate is investigated by performing conventional pull-out tests and the experimental results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been the subject of many studies during the last years. Recent accelerated aging tests have shown that bond degradation and FRP delamination are likely to occur in FRP-strengthened masonry components under hygrothermal conditions. While an investigation on the possible methods to improve the durability of these systems is necessary, the applicability of different bond repair methods should also be studied. This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, are repaired with two different adhesives: a conventional epoxy resin and a highly flexible polymer. The latter is used as an innovative adhesive in structural applications. The bond behavior in the repaired specimens is investigated by performing single-lap shear bond tests. Digital image correlation (DIC) is used for deeper investigation of the surface deformation and strains development. The effectiveness of the repair methods is discussed and compared with the strengthened specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent durability studies have shown the susceptibility of bond in fiber-reinforced polymer (FRP) strengthened masonry components to hygrothermal exposures. However, it is not clear how this local material degradation affects the global behavior of FRP-strengthened masonry structures. This study addresses this issue by numerically investigating the nonlinear behavior of FRP-masonry walls after aging in two different environmental conditions. A numerical modeling strategy is adopted and validated with existing experimental tests on FRP-strengthened masonry panels. The model, once validated, is used for modeling of four hypothetical FRP-strengthened masonry walls with different boundary conditions, strengthening schemes, and reinforcement ratios. The nonlinear behavior of the walls is then simulated before and after aging in two different environmental conditions. The degradation data are taken from previous accelerated aging tests. The changes in the failure mode and nonlinear response of the walls after aging are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, there is an increasing interest in using fiber reinforced polymers (FRP) for strengthening masonry elements. It has been observed that these materials, when used for externally bonded reinforcement (EBR), improve the performance of masonry components. However, issues such as durability and long-term performance of strengthened elements are still open. The bond between composite material and masonry substrate is a critical mechanism in EBR strengthening techniques, and therefore its durability and long-term performance should be deeply investigated and characterized. In the present study, the influence of water immersion on the bond performance is investigated by performing single-lap shear bond tests on two sets of GFRP-strengthened specimens immersed in water for six months. Different surface preparation techniques are used for each set of specimens to study their effect on the bond degradation. The specimens are prepared following the wet lay-up procedure. The observations and the obtained results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber Reinforced Polymers (FRPs) have been extensively used for externally bonded reinforcement of masonry structures during the last years. Available information shows that FRPs can significantly improve the seismic performance of masonry elements without altering their structural mass. However, the durability and long-term performance of the strengthened elements are not clearly known yet. Recent experimental results show that environmental conditions can lead to degradation of the bond between FRP and masonry and FRP delaminations. But the effect of these local degradation mechanisms on the global structural response is not studied yet. This paper is therefore aimed at numerically investigating the effect of environmental degradation on the global performance of strengthened masonry walls. The nonlinear behavior of masonry walls strengthened with FRP composites is initially simulated with the aim of a FE package. The adopted numerical modeling strategy is verified by comparison of numerical and experimental results. The model, once validated, is used for investigating the effect of materials and bond degradation on the global behavior and failure modes of strengthened walls. The effect of strengthening scheme on the long-term performance of strengthened walls is also investigated. The degradation data are taken from experimental tests previously performed by the authors. The numerical results show that the effect of local material degradation on the global response of strengthened walls depends on the strengthening schemes, and severity of the environmental conditions. Moreover, environmental induced degradations and FRP delaminations can lead to change of expected failure modes in the strengthened elements. These observations, that are usually neglected at the design stage, can be critical in the long-term performance of strengthened structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing concerns regarding the environmental impact generated by the use of inorganic materials in different fields of application increased the interest towards products based on materials with low environmental impact. In recent years, researchers have turned their attention towards the development of materials obtained from renewable sources, easily recoverable or biodegradable at the end of use. In the field of civil structures, a few attempts have been done to replace the most common composites (e.g. carbon and glass fibers) by materials less harmful to the environment, as natural fibers. This work presents a comprehensive experimental research on the mechanical performance of natural fibers for the strengthening of masonry constructions. Flax, hemp, jute, sisal and coir fibers have been investigated both from physical and mechanical points of view. The fibers with better performance were tested together with three different matrices (two of organic nature) in order to produce composites. These experimental results represent a useful database for understanding the potentialities of natural fibers as strengthening systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an application of a Boundary Element Method (BEM) formulation for anisotropic body analysis using isotropic fundamental solution. The anisotropy is considered by expressing a residual elastic tensor as the difference of the anisotropic and isotropic elastic tensors. Internal variables and cell discretization of the domain are considered. Masonry is a composite material consisting of bricks (masonry units), mortar and the bond between them and it is necessary to take account of anisotropy in this type of structure. The paper presents the formulation, the elastic tensor of the anisotropic medium properties and the algebraic procedure. Two examples are shown to validate the formulation and good agreement was obtained when comparing analytical and numerical results. Two further examples in which masonry walls were simulated, are used to demonstrate that the presented formulation shows close agreement between BE numerical results and different Finite Element (FE) models. © 2012 Elsevier Ltd.