828 resultados para Bomb calorimeter.
Resumo:
In cooperation with the Pennsylvania State College Agricultural Experiment Station.
Resumo:
"August 29, 1910."
Resumo:
The thermal degradation behavior of banana fiber and polypropylene/banana fiber composites has been studied by thermogravimetric analysis. Banana fiber was found to be decomposing in two stages, first one around 320 degrees C and the second one around 450 degrees C. For chemically treated banana fiber, the decomposition process has been at a higher temperature, indicating thermal stability for the treated fiber. Activation energies for thermal degradation were estimated using Coats and Redfern method. Calorific value of the banana fiber was measured using a constant volume isothermal bomb calorimeter. rystallization studies exhibited an increase in the crystallization temperature and crystallinity of polypropylene upon the addition of banana fiber. POLYM. COMPOS., 31:1113-1123, 2010. (C) 2009 Society of Plastics Engineers.
Resumo:
Higher heating value (HHV) is probably the most important property of the fuels. Bomb calorimeter and derived empirical formulae are often used for accurate determination of HHV of fuels. A useful empirical equation was derived to estimate HHV of petro-diesels from their C and H contents: HHV (in MJ/kg) = 0.3482(C) + 1.1887(H), r (2) = 0.9956. The derived correlation was validated against the most common formulae in the literature, Boie and Channiwala-Parikh correlations. Accordingly, accurate determination of C and H contents is essential for estimation of HHV and avoids using a bomb calorimeter. However, accurate estimation of C and H contents requires using expensive and laborious gas chromatographic techniques. In this work, chemometry offered a simple method for HHV determination of petro-diesels without using bomb calorimeter or even gas chromatography. PLS-1 calibration was used instead of gas chromatography to find C and H contents from the non-selective mid-infrared (MIR) spectra of petro-diesels, HHV was then estimated from the earlier empirical equation. The proposed method predicts HHV of petro-diesels with high accuracy and precision, with modest analysis costs. The present method may be extended to other fuels.
Resumo:
High energy materials are essential ingredients in both rocket and explosive formulations. These can be vulnerable due to maltreatment. During gulf war, several catastrophic accidents have been reported from their own payload munitions. The role of energetic binders here was to wrap the explosive formulations to convert it into insensitive munitions. With the aid of energetic binders, the explosive charges are not only protected from tragic accidents due to fire, bullet impact, adjacent detonation, unplanned transportation, but also form total energy output presumption. The use of energetic binders in rocket propellants and explosive charges has been increased after the Second World War. Inert binders in combination with energetic materials, performed well as binders but they diluted the final formulation. Obviously the total energy output was reduced. Currently, the research in the field of energetic polymers is an emerging area, since it plays crucial role in insensitive munitions. The present work emphasises on the synthesis and characterization of oxetanes, oxiranes and polyphosphazene based energetic polymers. The thesis is structured into six chapters. First part of chapter 1 deals with brief history of energetic polymers. The second part describes a brief literature survey of energetic polymers based on oxetanes and oxiranes. Third and fourth parts deal with energetic plasticizers and energetic polyphosphazenes. Finally, the fifth part deals with the various characterization techniques adopted for the current study and sixth part includes objectives of the present work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PAHs are pollutants of concern since they are known carcinogenic compounds. Their occurrence is mainly related to combustion or pyrolysis of organic matter such as fossil fuels. In the current scenario where biofuels are growingly important, it is also necessary to characterize PAH emissions due to their combustion. There are a number of works concerning PAH emissions from biodiesel combustion in Diesel engines, however, there are few regarding the difference between them depending on the feedstock and type of alcohol used in the transesterification. The authors have processed and characterized biodiesel from several feedstocks (Le. tallow, palm, rapeseed, soy-bean, coconut, peanut and linseed oils) to obtain FAME and FAEE and they have developed a method to measure the PAHs originated during their combustion in a bomb calorimeter. The tests have been carried out under different oxygen pressure conditions, and samples have been c1eaned from the bomb after each one of these tests. The samples have been prepared for GC-MS analysis, where PAH quantities among some other combustion products have been assessed. This work shows statistical relations obtained between the measured amounts of 18 PAHs of concern and the composition (oil and type of alcohol) used to obtain the biodiesel, and also the oxygen pressure during combustion.
Resumo:
The aim of this work is to investigate the thermochemical characteristics of Parinari polyandra Benth fruit shell. An agricultural waste residue is investigated using standard methods including thermogravimetric analysis (TGA), proximate and ultimate analysis, structural composition and bomb calorimeter. The proximate and ultimate analyses were carried out to determine the ash and fixed carbon contents, volatile matter, and elemental compositions. The structural composition analysis determined the hemicellulose, cellulose, and lignin content of the biomass. The measured calorific value obtained was 20.5. MJ/kg. The TGA and DTG profiles indicate the waste fruit shells are viable for pyrolysis reaction. The inorganic contents are relatively low with potassium found to be the most abundant element. The hemicelluloses and cellulose contents are indicative of relatively higher rate of pyrolysis and comparable with established biomass utilised for bio-oil production.
Resumo:
The stability of the oil phase obtained from intermediate pyrolysis process was used for this investigation. The analysis was based on standard methods of determining kinematic viscosity, gas - chromatography / mass - spectrometry for compositional changes, FT-IR for functional group, Karl Fischer titration for water content and bomb calorimeter for higher heaating values. The methods were used to determine changes that occurred during ageing. The temperatures used for thermal testing were 60 °C and 80 °C for the periods of 72 and 168 h. Methanol and biodiesel were used as solvents for the analysis. The bio-oil samples contained 10 % methanol, 10 % Biodiesel, 20 % Biodiesel and unstabilised pyrolysis oil. The tests carried out at 80 °C showed drastic changes compared to those at 60 °C. The bio-oil samples containing 20 % biodiesel proved to be more stable than those with 10 % methanol. The unstabilised pyrolysis oil showed the greatest changes in viscosity, composition change and highest increase in water content. The measurement of kinematic viscosity and gas chromatograph mass spectrometry were found to be more reliable for predicting the ageing process.
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.
Resumo:
Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.
Resumo:
A constant volume window bomb has been used to measure the characteristic velocity (c*) of rocket propellants. Analysis of the combustion process inside the bomb including heat losses has been made. The experiments on double base and composite propellants have revealed some (i) basic heat transfer aspects inside the bomb and (ii) combustion characteristics of Ammonium Perchlorate-Polyester propellants. It has been found that combustion continues even beyond the peak pressure and temperature points. Lithium Fluoride mixed propellants do not seem to indicate significant differences in c*) though the low pressure deflagration limit is increased with percentage of Lithium Fluoride.
Resumo:
We describe an automated calorimeter for measurement of specific heat in the temperature range 10 K>T>0.5 K. It uses sample of moderate size (100–1000 mg), has a moderate precision and accuracy (2%–5%), is easy to operate and the measurements can be done quickly with He4 economy. The accuracy of this calorimeter was checked by measurement of specific heat of copper and that of aluminium near its superconducting transition temperature.