932 resultados para Blurred and noisy images
Resumo:
Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.
Resumo:
We use networks composed of three phase-locked loops (PLLs), where one of them is the master, for recognizing noisy images. The values of the coupling weights among the PLLs control the noise level which does not affect the successful identification of the input image. Analytical results and numerical tests are presented concerning the scheme performance. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The use of iris recognition for human authentication has been spreading in the past years. Daugman has proposed a method for iris recognition, composed by four stages: segmentation, normalization, feature extraction, and matching. In this paper we propose some modifications and extensions to Daugman's method to cope with noisy images. These modifications are proposed after a study of images of CASIA and UBIRIS databases. The major modification is on the computationally demanding segmentation stage, for which we propose a faster and equally accurate template matching approach. The extensions on the algorithm address the important issue of pre-processing that depends on the image database, being mandatory when we have a non infra-red camera, like a typical WebCam. For this scenario, we propose methods for reflection removal and pupil enhancement and isolation. The tests, carried out by our C# application on grayscale CASIA and UBIRIS images show that the template matching segmentation method is more accurate and faster than the previous one, for noisy images. The proposed algorithms are found to be efficient and necessary when we deal with non infra-red images and non uniform illumination.
Resumo:
A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.
Resumo:
Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.
Resumo:
The aim of this study was to comparatively assess dental arch width, in the canine and molar regions, by means of direct measurements from plaster models, photocopies and digitized images of the models. The sample consisted of 130 pairs of plaster models, photocopies and digitized images of the models of white patients (n = 65), both genders, with Class I and Class II Division 1 malocclusions, treated by standard Edgewise mechanics and extraction of the four first premolars. Maxillary and mandibular intercanine and intermolar widths were measured by a calibrated examiner, prior to and after orthodontic treatment, using the three modes of reproduction of the dental arches. Dispersion of the data relative to pre- and posttreatment intra-arch linear measurements (mm) was represented as box plots. The three measuring methods were compared by one-way ANOVA for repeated measurements (α = 0.05). Initial / final mean values varied as follows: 33.94 to 34.29 mm / 34.49 to 34.66 mm (maxillary intercanine width); 26.23 to 26.26 mm / 26.77 to 26.84 mm (mandibular intercanine width); 49.55 to 49.66 mm / 47.28 to 47.45 mm (maxillary intermolar width) and 43.28 to 43.41 mm / 40.29 to 40.46 mm (mandibular intermolar width). There were no statistically significant differences between mean dental arch widths estimated by the three studied methods, prior to and after orthodontic treatment. It may be concluded that photocopies and digitized images of the plaster models provided reliable reproductions of the dental arches for obtaining transversal intra-arch measurements.
Resumo:
Using Landsat imagery, forest canopy density (FCD) estimated with the FCD Mapper®, was correlated with predominant height (PDH, measured as the average height of the tallest 50 trees per hectare) for 20 field plots measured in native forest at Noosa Heads, south-east Queensland, Australia. A corresponding image was used to calculate FCD in Leyte Island, the Philippines and was validated on the ground for accuracy. The FCD Mapper was produced for the International Tropical Timber Organisation and estimates FCD as an index of canopy density using reflectance characteristics of Landsat Enhanced Thematic (ETM) Mapper images. The FCD Mapper is a ‘semi-expert’ computer program which uses interactive screens to allow the operator to make decisions concerning the classification of land into bare soil, grass and forest. At Noosa, a positive strong nonlinear relationship (r2 = 0.86) was found between FCD and PDH for 15 field plots with variable PDH but complete canopy closure. An additional five field plots were measured in forest with a broken canopy and the software assessed these plots as having a much lower FCD than forest with canopy closure. FCD estimates for forest and agricultural land in the island of Leyte and subsequent field validation showed that at appropriate settings, the FCD Mapper differentiated between tropical rainforest and banana or coconut plantation. These findings suggest that in forests with a closed canopy this remote sensing technique has promise for forest inventory and productivity assessment. The findings also suggest that the software has promise for discriminating between native forest with a complete canopy and forest which has a broken canopy, such as coconut or banana plantation.
Resumo:
For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz harmonic capacity and show this capacity is invariant under bilipschitz homeomorphisms.
Resumo:
The objective of this work was to evaluate the width and length incidence in a single seed fraction of oat [Avena sativa (L.)] cv. Cristal. The seeds were selected by a mechanical divider and by hand, and their correspondence to radiographic images in seeds with glumes and their caryopses. The width and length of the seeds with glumes and their caryopses were measured with electronic calliper, and their weight, with precision balance. Radiographic images of seeds with glumes were taken with an X-ray experimental equipment. The analyst selected seeds with glumes by the width and by the length previously determined and so with more weight, than that obtained by hand selection was slightly narrower, larger and lighter. The presence of the glumes masked the caryopses real dimensions (width and length), and conduced the analyst to select seeds that differed more by the width than by the length. The radiographic images showed the presence, or not, of caryopses inside the seed and its real dimensions. The mechanical partition method for seeds showed to be more efficient because the analyst subjectivity was not considered when the selection upon its dimensions was done. The X-ray analysis was a useful tool that complements the pure seed fraction selection as another factor of seed quality.
Resumo:
The interface of MgO/Ag(001) has been studied with density functional theory applied to slabs. We have found that regular MgO films show a small adhesion to the silver substrate, the binding can be increased in off-stoichiometric regimes, either by the presence of O vacancies at the oxide film or by a small excess of O atoms at the interface between the ceramic to the metal. By means of theoretical methods, the scanning tunneling microscopy signatures of these films is also analyzed in some detail. For defect free deposits containing 1 or 2 ML and at low voltages, tunnelling takes place from the surface Ag substrate, and at large positive voltages Mg atoms are imaged. If defects, oxygen vacancies, are present on the surface of the oxide they introduce much easier channels for tunnelling resulting in big protrusions and controlling the shape of the image, the extra O stored at the interface can also be detected for very thin films.
Resumo:
Following their detection and seizure by police and border guard authorities, false identity and travel documents are usually scanned, producing digital images. This research investigates the potential of these images to classify false identity documents, highlight links between documents produced by a same modus operandi or same source, and thus support forensic intelligence efforts. Inspired by previous research work about digital images of Ecstasy tablets, a systematic and complete method has been developed to acquire, collect, process and compare images of false identity documents. This first part of the article highlights the critical steps of the method and the development of a prototype that processes regions of interest extracted from images. Acquisition conditions have been fine-tuned in order to optimise reproducibility and comparability of images. Different filters and comparison metrics have been evaluated and the performance of the method has been assessed using two calibration and validation sets of documents, made up of 101 Italian driving licenses and 96 Portuguese passports seized in Switzerland, among which some were known to come from common sources. Results indicate that the use of Hue and Edge filters or their combination to extract profiles from images, and then the comparison of profiles with a Canberra distance-based metric provides the most accurate classification of documents. The method appears also to be quick, efficient and inexpensive. It can be easily operated from remote locations and shared amongst different organisations, which makes it very convenient for future operational applications. The method could serve as a first fast triage method that may help target more resource-intensive profiling methods (based on a visual, physical or chemical examination of documents for instance). Its contribution to forensic intelligence and its application to several sets of false identity documents seized by police and border guards will be developed in a forthcoming article (part II).