756 resultados para Blast-furnaces
Resumo:
The foundry sand agglomerated with alkaline phenolic resin, used for the manufacture of molds, was found to be a residue which is able to be recycled, minimizing the costs of disposal and the environmental impact. This paper analyzes the thermomechanical regeneration and leaching processes and also assesses the influence of additives on the improvement of the mechanical properties of the sands. Besides, the industrial experiments carried out at CSN aiming at the foundry sand recycling in the covering of the blast furnace troughs are presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.
Resumo:
The consumption of the carbonaceous mortar for injection in the CSN's blast furnaces hearth has increased in the last years, as a function of the modern situation of the blast furnaces com paign. Allied to the growing consumption background, the devaluation of the Brazilian currency stroke hardly the importation costs of this product.
Resumo:
no.2(1922)
Resumo:
Mode of access: Internet.
Resumo:
"Reference data publication."
Resumo:
This paper describes the main characteristics and advantages of convective heating system for refractory lining, compared with conventional heating systems. In addition the main results obtained are presented with its implementation in CSN Blast Furnace #2 and 3 Runners, in terms of cost and equipment availability, as well as the need for ceramic coating to protect the lining against oxidation, arising from excessive air combustion. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A previously developed one-dimensional mathematical model, to explain raceway hysteresis, is used to predict the raceway diameter in operating blast furnaces and hot models. Raceway size obtained from the open literature under various conditions for various blast furnaces are compared with computed predictions. In addition the predictions are also compared with published outcomes from other hot models. Simulated results on raceway diameter are in very good agreement with published operating blast furnace and hot model data. The effect of various parameters such as tuyere and hearth diameter, coke size and density, void fraction and bed height on raceway diameter has been studied.
Resumo:
The landscape of late medieval Ireland, like most places in Europe, was characterized by intensified agricultural exploitation, the growth and founding of towns and cities and the construction of large stone edifices, such as castles and monasteries. None of these could have taken place without iron. Axes were needed for clearing woodland, ploughs for turning the soil, saws for wooden buildings and hammers and chisels for the stone ones, all of which could not realistically have been made from any other material. The many battles, waged with ever increasingly sophisticated weaponry, needed a steady supply of iron and steel. During the same period, the European iron industry itself underwent its most fundamental transformation since its inception; at the beginning of the period it was almost exclusively based on small furnaces producing solid blooms and by the turn of the seventeenth century it was largely based on liquid-iron production in blast-furnaces the size of a house. One of the great advantages of studying the archaeology of ironworking is that its main residue, slag, is often produced in copious amounts both during smelting and smithing, is virtually indestructible and has very little secondary use. This means that most sites where ironworking was carried out are readily recognizable as such by the occurrence of this slag. Moreover, visual examination can distinguish between various types of slag, which are often characteristic for the activity from which they derive. The ubiquity of ironworking in the period under study further means that we have large amounts of residues available for study, allowing us to distinguish patterns both inside assemblages and between sites. Disadvantages of the nature of the remains related to ironworking include the poor preservation of the installations used, especially the furnaces, which were often built out of clay and located above ground. Added to this are the many parameters contributing to the formation of the above-mentioned slag, making its composition difficult to connect to a certain technology or activity. Ironworking technology in late medieval Ireland has thus far not been studied in detail. Much of the archaeological literature on the subject is still tainted by the erroneous attribution of the main type of slag, bun-shaped cakes, to smelting activities. The large-scale infrastructure works of the first decade of the twenty-first century have led to an exponential increase in the amount of sites available for study. At the same time, much of the material related to metalworking recovered during these boom-years was subjected to specialist analysis. This has led to a near-complete overhaul of our knowledge of early ironworking in Ireland. Although many of these new insights are quickly seeping into the general literature, no concise overviews on the current understanding of the early Irish ironworking technology have been published to date. The above then presented a unique opportunity to apply these new insights to the extensive body of archaeological data we now possess. The resulting archaeological information was supplemented with, and compared to, that contained in the historical sources relating to Ireland for the same period. This added insights into aspects of the industry often difficult to grasp solely through the archaeological sources, such as the people involved and the trade in iron. Additionally, overviews on several other topics, such as a new distribution map of Irish iron ores and a first analysis of the information on iron smelting and smithing in late medieval western Europe, were compiled to allow this new knowledge on late medieval Irish ironworking to be put into a wider context. Contrary to current views, it appears that it is not smelting technology which differentiates Irish ironworking from the rest of Europe in the late medieval period, but its smithing technology and organisation. The Irish iron-smelting furnaces are generally of the slag-tapping variety, like their other European counterparts. Smithing, on the other hand, is carried out at ground-level until at least the sixteenth century in Ireland, whereas waist-level hearths become the norm further afield from the fourteenth century onwards. Ceramic tuyeres continue to be used as bellows protectors, whereas these are unknown elsewhere on the continent. Moreover, the lack of market centres at different times in late medieval Ireland, led to the appearance of isolated rural forges, a type of site unencountered in other European countries during that period. When these market centres are present, they appear to be the settings where bloom smithing is carried out. In summary, the research below not only offered us the opportunity to give late medieval ironworking the place it deserves in the broader knowledge of Ireland's past, but it also provided both a base for future research within the discipline, as well as a research model applicable to different time periods, geographical areas and, perhaps, different industries..
Resumo:
Blast furnace gas yield is essentially controlled by a gas-solid reaction phenomenon, which strongly influences hot metal manufacturing costs. As a result of rising prices for reducing agents on the international market, Companhia Siderurgica Nacional decided to inject natural gas into its blast furnaces. With more gas inside the furnace, the burden permeability became even more critical. To improve blast furnace gas yield, a new technological approach was adopted; raising the metallic burden reaction surface. To that end, a special sinter was developed with permeability being controlled by adding micropore nucleus forming agents, cellulignin coal, without, however, degrading its mechanical properties. This paper shows the main process parameters and the results from physicochemical characterisation of a sinter with controlled permeability, on a pilot scale, compared to those of conventional sinter. Gas flow laboratory simulations have conclusively corroborated the positive effects of micropore nucleus forming agents on enhancing sinter permeability.
Resumo:
The work describes actions carried out in colaboration among the National Steel Company - (CSN)-Brazil and the Interdisciplinary Laboratory of Electrochemistry and Ceramic - LIEC of the Federal University of Sao Carlos Brazil (UFSCar-Brazil), in the area of I&D, for integral management and improvement of the quality and performance of the refractory linings in the sintering areas, blast furnace, hot air pipe lines transferency to the blast furnace, pig-iron ladles, running channels, blast furnaces hearths, torpedo car, etc., as well as, the economic impact generated by the installation of the adopted measures.
Resumo:
The Petrobras produced green petroleum coke (GPC) is a carbon rich fuel, virtually ash-free, with low sulfur content, and is a fuel suitable to replace metallurgical coke in blast furnaces. The GPC was tested in a pulverized coal injection simulator built in the Volta Redonda research center. It presented a low burning efficiency due to low volatile material content and high substitution rate by the carbon content. The tests were carried out in blast furnaces with ≤ 50% Petrobras GPC in the coal blends. The injected coal/CVP mixtures produced no negative side effects in the blast furnace grinding systems, pneumatic conveying, or operating process. The mixture burning process inside the blast furnace showed a decrease in fuel consumption, with a significant reduction in metallurgical coke consumption. The industrial-scale tests of the GPC mixtures did not reach the 70% maximum for lack of the GPC feedstock, which is necessary to continue with standard coal mixtures.
Resumo:
Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. © 2013 by the authors; licensee MDPI, Basel, Switzerland.