936 resultados para Biology, Biostatistics|Biology, Genetics|Biology, Bioinformatics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous studies have been carried out to try to better understand the genetic predisposition for cardiovascular disease. Although it is widely believed that multifactorial diseases such as cardiovascular disease is the result from effects of many genes which working alone or interact with other genes, most genetic studies have been focused on identifying of cardiovascular disease susceptibility genes and usually ignore the effects of gene-gene interactions in the analysis. The current study applies a novel linkage disequilibrium based statistic for testing interactions between two linked loci using data from a genome-wide study of cardiovascular disease. A total of 53,394 single nucleotide polymorphisms (SNPs) are tested for pair-wise interactions, and 8,644 interactions are found to be significant with p-values less than 3.5×10-11. Results indicate that known cardiovascular disease susceptibility genes tend not to have many significantly interactions. One SNP in the CACNG1 (calcium channel, voltage-dependent, gamma subunit 1) gene and one SNP in the IL3RA (interleukin 3 receptor, alpha) gene are found to have the most significant pair-wise interactions. Findings from the current study should be replicated in other independent cohort to eliminate potential false positive results.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next-generation DNA sequencing platforms can effectively detect the entire spectrum of genomic variation and is emerging to be a major tool for systematic exploration of the universe of variants and interactions in the entire genome. However, the data produced by next-generation sequencing technologies will suffer from three basic problems: sequence errors, assembly errors, and missing data. Current statistical methods for genetic analysis are well suited for detecting the association of common variants, but are less suitable to rare variants. This raises great challenge for sequence-based genetic studies of complex diseases.^ This research dissertation utilized genome continuum model as a general principle, and stochastic calculus and functional data analysis as tools for developing novel and powerful statistical methods for next generation of association studies of both qualitative and quantitative traits in the context of sequencing data, which finally lead to shifting the paradigm of association analysis from the current locus-by-locus analysis to collectively analyzing genome regions.^ In this project, the functional principal component (FPC) methods coupled with high-dimensional data reduction techniques will be used to develop novel and powerful methods for testing the associations of the entire spectrum of genetic variation within a segment of genome or a gene regardless of whether the variants are common or rare.^ The classical quantitative genetics suffer from high type I error rates and low power for rare variants. To overcome these limitations for resequencing data, this project used functional linear models with scalar response to develop statistics for identifying quantitative trait loci (QTLs) for both common and rare variants. To illustrate their applications, the functional linear models were applied to five quantitative traits in Framingham heart studies. ^ This project proposed a novel concept of gene-gene co-association in which a gene or a genomic region is taken as a unit of association analysis and used stochastic calculus to develop a unified framework for testing the association of multiple genes or genomic regions for both common and rare alleles. The proposed methods were applied to gene-gene co-association analysis of psoriasis in two independent GWAS datasets which led to discovery of networks significantly associated with psoriasis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies of differential gene-expressions have been conducted between two given conditions. The two-condition experimental (TCE) approach is simple in that all genes detected display a common differential expression pattern responsive to a common two-condition difference. Therefore, the genes that are differentially expressed under the other conditions other than the given two conditions are undetectable with the TCE approach. In order to address the problem, we propose a new approach called multiple-condition experiment (MCE) without replication and develop corresponding statistical methods including inference of pairs of conditions for genes, new t-statistics, and a generalized multiple-testing method for any multiple-testing procedure via a control parameter C. We applied these statistical methods to analyze our real MCE data from breast cancer cell lines and found that 85 percent of gene-expression variations were caused by genotypic effects and genotype-ANAX1 overexpression interactions, which agrees well with our expected results. We also applied our methods to the adenoma dataset of Notterman et al. and identified 93 differentially expressed genes that could not be found in TCE. The MCE approach is a conceptual breakthrough in many aspects: (a) many conditions of interests can be conducted simultaneously; (b) study of association between differential expressions of genes and conditions becomes easy; (c) it can provide more precise information for molecular classification and diagnosis of tumors; (d) it can save lot of experimental resources and time for investigators.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O projecto de sequenciação do genoma humano veio abrir caminho para o surgimento de novas áreas transdisciplinares de investigação, como a biologia computacional, a bioinformática e a bioestatística. Um dos resultados emergentes desde advento foi a tecnologia de DNA microarrays, que permite o estudo do perfil da expressão de milhares de genes, quando sujeitos a perturbações externas. Apesar de ser uma tecnologia relativamente consolidada, continua a apresentar um conjunto vasto de desafios, nomeadamente do ponto de vista computacional e dos sistemas de informação. São exemplos a optimização dos procedimentos de tratamento de dados bem como o desenvolvimento de metodologias de interpretação semi-automática dos resultados. O principal objectivo deste trabalho consistiu em explorar novas soluções técnicas para agilizar os procedimentos de armazenamento, partilha e análise de dados de experiências de microarrays. Com esta finalidade, realizou-se uma análise de requisitos associados às principais etapas da execução de uma experiência, tendo sido identificados os principais défices, propostas estratégias de melhoramento e apresentadas novas soluções. Ao nível da gestão de dados laboratoriais, é proposto um LIMS (Laboratory Information Management System) que possibilita a gestão de todos os dados gerados e dos procedimentos realizados. Este sistema integra ainda uma solução que permite a partilha de experiências, de forma a promover a participação colaborativa de vários investigadores num mesmo projecto, mesmo usando LIMS distintos. No contexto da análise de dados, é apresentado um modelo que facilita a integração de algoritmos de processamento e de análise de experiências no sistema desenvolvido. Por fim, é proposta uma solução para facilitar a interpretação biológica de um conjunto de genes diferencialmente expressos, através de ferramentas que integram informação existente em diversas bases de dados biomédicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um dos maiores avanços científicos do século XX foi o desenvolvimento de tecnologia que permite a sequenciação de genomas em larga escala. Contudo, a informação produzida pela sequenciação não explica por si só a sua estrutura primária, evolução e seu funcionamento. Para esse fim novas áreas como a biologia molecular, a genética e a bioinformática são usadas para estudar as diversas propriedades e funcionamento dos genomas. Com este trabalho estamos particularmente interessados em perceber detalhadamente a descodificação do genoma efectuada no ribossoma e extrair as regras gerais através da análise da estrutura primária do genoma, nomeadamente o contexto de codões e a distribuição dos codões. Estas regras estão pouco estudadas e entendidas, não se sabendo se poderão ser obtidas através de estatística e ferramentas bioinfomáticas. Os métodos tradicionais para estudar a distribuição dos codões no genoma e seu contexto não providenciam as ferramentas necessárias para estudar estas propriedades à escala genómica. As tabelas de contagens com as distribuições de codões, assim como métricas absolutas, estão actualmente disponíveis em bases de dados. Diversas aplicações para caracterizar as sequências genéticas estão também disponíveis. No entanto, outros tipos de abordagens a nível estatístico e outros métodos de visualização de informação estavam claramente em falta. No presente trabalho foram desenvolvidos métodos matemáticos e computacionais para a análise do contexto de codões e também para identificar zonas onde as repetições de codões ocorrem. Novas formas de visualização de informação foram também desenvolvidas para permitir a interpretação da informação obtida. As ferramentas estatísticas inseridas no modelo, como o clustering, análise residual, índices de adaptação dos codões revelaram-se importantes para caracterizar as sequências codificantes de alguns genomas. O objectivo final é que a informação obtida permita identificar as regras gerais que governam o contexto de codões em qualquer genoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La méthode ChIP-seq est une technologie combinant la technique de chromatine immunoprecipitation avec le séquençage haut-débit et permettant l’analyse in vivo des facteurs de transcription à grande échelle. Le traitement des grandes quantités de données ainsi générées nécessite des moyens informatiques performants et de nombreux outils ont vu le jour récemment. Reste cependant que cette multiplication des logiciels réalisant chacun une étape de l’analyse engendre des problèmes de compatibilité et complique les analyses. Il existe ainsi un besoin important pour une suite de logiciels performante et flexible permettant l’identification des motifs. Nous proposons ici un ensemble complet d’analyse de données ChIP-seq disponible librement dans R et composé de trois modules PICS, rGADEM et MotIV. A travers l’analyse de quatre jeux de données des facteurs de transcription CTCF, STAT1, FOXA1 et ER nous avons démontré l’efficacité de notre ensemble d’analyse et mis en avant les fonctionnalités novatrices de celui-ci, notamment concernant le traitement des résultats par MotIV conduisant à la découverte de motifs non détectés par les autres algorithmes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les traits quantitatifs complexes sont des caractéristiques mesurables d’organismes vivants qui résultent de l’interaction entre plusieurs gènes et facteurs environnementaux. Les locus génétiques liés à un caractère complexe sont appelés «locus de traits quantitatifs » (QTL). Récemment, en considérant les niveaux d’expression tissulaire de milliers de gènes comme des traits quantitatifs, il est devenu possible de détecter des «QTLs d’expression» (eQTL). Alors que ces derniers ont été considérés comme des phénotypes intermédiaires permettant de mieux comprendre l’architecture biologique des traits complexes, la majorité des études visent encore à identifier une mutation causale dans un seul gène. Cette approche ne peut remporter du succès que dans les situations où le gène incriminé a un effet majeur sur le trait complexe, et ne permet donc pas d’élucider les situations où les traits complexes résultent d’interactions entre divers gènes. Cette thèse propose une approche plus globale pour : 1) tenir compte des multiples interactions possibles entre gènes pour la détection de eQTLs et 2) considérer comment des polymorphismes affectant l’expression de plusieurs gènes au sein de groupes de co-expression pourraient contribuer à des caractères quantitatifs complexes. Nos contributions sont les suivantes : Nous avons développé un outil informatique utilisant des méthodes d’analyse multivariées pour détecter des eQTLs et avons montré que cet outil augmente la sensibilité de détection d’une classe particulière de eQTLs. Sur la base d’analyses de données d’expression de gènes dans des tissus de souris recombinantes consanguines, nous avons montré que certains polymorphismes peuvent affecter l’expression de plusieurs gènes au sein de domaines géniques de co-expression. En combinant des études de détection de eQTLs avec des techniques d’analyse de réseaux de co-expression de gènes dans des souches de souris recombinantes consanguines, nous avons montré qu’un locus génétique pouvait être lié à la fois à l’expression de plusieurs gènes au niveau d’un domaine génique de co-expression et à un trait complexe particulier (c.-à-d. la masse du ventricule cardiaque gauche). Au total, nos études nous ont permis de détecter plusieurs mécanismes par lesquels des polymorphismes génétiques peuvent être liés à l’expression de plusieurs gènes, ces derniers pouvant eux-mêmes être liés à des traits quantitatifs complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les études génétiques, telles que les études de liaison ou d’association, ont permis d’acquérir une plus grande connaissance sur l’étiologie de plusieurs maladies affectant les populations humaines. Même si une dizaine de milliers d’études génétiques ont été réalisées sur des centaines de maladies ou autres traits, une grande partie de leur héritabilité reste inexpliquée. Depuis une dizaine d’années, plusieurs percées dans le domaine de la génomique ont été réalisées. Par exemple, l’utilisation des micropuces d’hybridation génomique comparative à haute densité a permis de démontrer l’existence à grande échelle des variations et des polymorphismes en nombre de copies. Ces derniers sont maintenant détectables à l’aide de micropuce d’ADN ou du séquençage à haut débit. De plus, des études récentes utilisant le séquençage à haut débit ont permis de démontrer que la majorité des variations présentes dans l’exome d’un individu étaient rares ou même propres à cet individu. Ceci a permis la conception d’une nouvelle micropuce d’ADN permettant de déterminer rapidement et à faible coût le génotype de plusieurs milliers de variations rares pour un grand ensemble d’individus à la fois. Dans ce contexte, l’objectif général de cette thèse vise le développement de nouvelles méthodologies et de nouveaux outils bio-informatiques de haute performance permettant la détection, à de hauts critères de qualité, des variations en nombre de copies et des variations nucléotidiques rares dans le cadre d’études génétiques. Ces avancées permettront, à long terme, d’expliquer une plus grande partie de l’héritabilité manquante des traits complexes, poussant ainsi l’avancement des connaissances sur l’étiologie de ces derniers. Un algorithme permettant le partitionnement des polymorphismes en nombre de copies a donc été conçu, rendant possible l’utilisation de ces variations structurales dans le cadre d’étude de liaison génétique sur données familiales. Ensuite, une étude exploratoire a permis de caractériser les différents problèmes associés aux études génétiques utilisant des variations en nombre de copies rares sur des individus non reliés. Cette étude a été réalisée avec la collaboration du Wellcome Trust Centre for Human Genetics de l’University of Oxford. Par la suite, une comparaison de la performance des algorithmes de génotypage lors de leur utilisation avec une nouvelle micropuce d’ADN contenant une majorité de marqueurs rares a été réalisée. Finalement, un outil bio-informatique permettant de filtrer de façon efficace et rapide des données génétiques a été implémenté. Cet outil permet de générer des données de meilleure qualité, avec une meilleure reproductibilité des résultats, tout en diminuant les chances d’obtenir une fausse association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In population studies, most current methods focus on identifying one outcome-related SNP at a time by testing for differences of genotype frequencies between disease and healthy groups or among different population groups. However, testing a great number of SNPs simultaneously has a problem of multiple testing and will give false-positive results. Although, this problem can be effectively dealt with through several approaches such as Bonferroni correction, permutation testing and false discovery rates, patterns of the joint effects by several genes, each with weak effect, might not be able to be determined. With the availability of high-throughput genotyping technology, searching for multiple scattered SNPs over the whole genome and modeling their joint effect on the target variable has become possible. Exhaustive search of all SNP subsets is computationally infeasible for millions of SNPs in a genome-wide study. Several effective feature selection methods combined with classification functions have been proposed to search for an optimal SNP subset among big data sets where the number of feature SNPs far exceeds the number of observations. ^ In this study, we take two steps to achieve the goal. First we selected 1000 SNPs through an effective filter method and then we performed a feature selection wrapped around a classifier to identify an optimal SNP subset for predicting disease. And also we developed a novel classification method-sequential information bottleneck method wrapped inside different search algorithms to identify an optimal subset of SNPs for classifying the outcome variable. This new method was compared with the classical linear discriminant analysis in terms of classification performance. Finally, we performed chi-square test to look at the relationship between each SNP and disease from another point of view. ^ In general, our results show that filtering features using harmononic mean of sensitivity and specificity(HMSS) through linear discriminant analysis (LDA) is better than using LDA training accuracy or mutual information in our study. Our results also demonstrate that exhaustive search of a small subset with one SNP, two SNPs or 3 SNP subset based on best 100 composite 2-SNPs can find an optimal subset and further inclusion of more SNPs through heuristic algorithm doesn't always increase the performance of SNP subsets. Although sequential forward floating selection can be applied to prevent from the nesting effect of forward selection, it does not always out-perform the latter due to overfitting from observing more complex subset states. ^ Our results also indicate that HMSS as a criterion to evaluate the classification ability of a function can be used in imbalanced data without modifying the original dataset as against classification accuracy. Our four studies suggest that Sequential Information Bottleneck(sIB), a new unsupervised technique, can be adopted to predict the outcome and its ability to detect the target status is superior to the traditional LDA in the study. ^ From our results we can see that the best test probability-HMSS for predicting CVD, stroke,CAD and psoriasis through sIB is 0.59406, 0.641815, 0.645315 and 0.678658, respectively. In terms of group prediction accuracy, the highest test accuracy of sIB for diagnosing a normal status among controls can reach 0.708999, 0.863216, 0.639918 and 0.850275 respectively in the four studies if the test accuracy among cases is required to be not less than 0.4. On the other hand, the highest test accuracy of sIB for diagnosing a disease among cases can reach 0.748644, 0.789916, 0.705701 and 0.749436 respectively in the four studies if the test accuracy among controls is required to be at least 0.4. ^ A further genome-wide association study through Chi square test shows that there are no significant SNPs detected at the cut-off level 9.09451E-08 in the Framingham heart study of CVD. Study results in WTCCC can only detect two significant SNPs that are associated with CAD. In the genome-wide study of psoriasis most of top 20 SNP markers with impressive classification accuracy are also significantly associated with the disease through chi-square test at the cut-off value 1.11E-07. ^ Although our classification methods can achieve high accuracy in the study, complete descriptions of those classification results(95% confidence interval or statistical test of differences) require more cost-effective methods or efficient computing system, both of which can't be accomplished currently in our genome-wide study. We should also note that the purpose of this study is to identify subsets of SNPs with high prediction ability and those SNPs with good discriminant power are not necessary to be causal markers for the disease.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^