802 resultados para Biodiversity-ecosystem functioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las acciones antrópicas han alterado los ecosistemas a escala global mediante cambios en la estructura y función de los sistemas terrestres y acuáticos. En este sentido, la deforestación de bosques ripariales impacta fuertemente sobre los sistemas lóticos como así también el proceso inverso, la conversión de pasturas naturales a bosques debido a forestaciones extensivas. Las nacientes de los arroyos de la provincia de Córdoba se ubican en pastizales dominados por gramíneas, muchos de los cuales han sido reemplazados por plantaciones de coníferas, con potenciales efectos sobre la estructura y el funcionamiento de los cursos de agua. En consecuencia, la evaluación de los efectos de esta actividad forestal sobre los arroyos es esencial para la implementación de adecuadas estrategias de manejo y conservación del recurso acuático. El objetivo de este proyecto es evaluar los efectos de la forestación con pináceas sobre la estructura y el funcionamiento de sistemas fluviales en pastizales de altura de las sierras de Córdoba. Se pretende analizar la dinámica de la biota acuática en arroyos de pastizales y en arroyos forestados. Se cuantificarán productores primarios y materia orgánica particulada y se medirán procesos ecológicos como la producción primaria y descomposición de materia orgánica gruesa. Se espera que la forestación con pináceas altere el ciclo de los nutrientes, disminuya el caudal y cambie el balance de temperatura al incrementar la sombra y el ingreso de materia orgánica particulada gruesa. En consecuencia, y debido a los cambios abióticos contrastantes generados por la implantación de pinos, podrían detectarse alteraciones drásticas en el ecosistema. Se seleccionarán seis arroyos de la subcuenca del arroyo Santa Rosa (Subcuenca Ctalamochita). Tres arroyos discurren en pastizales naturales y tres en áreas forestadas con pináceas. Se tomarán muestras de invertebrados y materia orgánica en el bentos en aguas altas y aguas bajas y se registrarán parámetros físico-químicos. Se colectarán muestras de perifiton para análisis de especies, biomasa y clorofila. Se realizarán experimentos de campo para medir la tasa de degradación de la materia orgánica y la producción primaria. La detección del grado de alteración de los sistemas naturales es el punto de partida para la implementación de apropiadas estragias de manejo del recurso. Entre los indicadores que permitirán verificar el efecto de las forestaciones estan los cambios en la biodiversidad, en la tasa de degradación de materia orgánica y en la producción primaria, como así también en la dinámica de los nutrientes y en los ciclos de caudales. Esta propuesta pretende generar lazos de interrelación entre distintos sectores para la implementación efectiva de planes de conservación y restauración y propiciar las relaciones necesarias para el logro de objetivos que beneficien a la sociedad como un todo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological variation in nature is called biodiversity. Anthropogenic pressures have led to a loss of biodiversity, alarming scientists as to what consequences declining diversity has for ecosystem functioning. The general consensus is that diversity (e.g. species richness or identity) affects functioning and provides services from which humans benefit. The aim of this thesis was to investigate how aquatic plant species richness and identity affect ecosystem functioning in terms of processes such as primary production, nutrient availability, epifaunal colonization and properties e.g. stability of Zostera marina subjected to shading. The main work was carried out in the field and ranged temporally from weeklong to 3.5 months-long experiments. The experimental plants used frequently co-occur in submerged meadows in the northern Baltic Sea and consist of eelgrass (Z. marina), perfoliate pondweed (Potamogeton perfoliatus), sago pondweed (P. pectinatus), slender-leaved pondweed (P. filiformis) and horned pondweed (Zannichellia palustris). The results showed that plant richness affected epifaunal community variables weakly, but had a strong positive effect on infaunal species number and functional diversity, while plant identity had strong effects on amphipods (Gammarus spp.), of which abundances were higher in plant assemblages consisting of P. perfoliatus. Depending on the starting standardizing unit, plant richness showed varying effects on primary production. In shoot density-standardized plots, plant richness increased the shoot densities of three out of four species and enhanced the plant biomass production. Both positive complementarity and selection effects were found to underpin the positive biodiversity effects. In shoot biomass-standardized plots, richness effects only affected biomass production of one species. Negative selection was prevalent, counteracting positive complementarity, which resulted in no significant biodiversity effect. The stability of Z. marina was affected by plant richness in such that Z. marina growing in polycultures lost proportionally less biomass than Z. marina in monocultures and thus had a higher resistance to shading. Monoculture plants in turn gained biomass faster, and thereby had a faster recovery than Z. marina growing in polycultures. These results indicate that positive interspecific interactions occurred during shading, while the faster recovery of monocultures suggests that the change from shading stress to recovery resulted in a shift from positive interactions to resource competition between species. The results derived from this thesis show that plant diversity affects ecosystem functioning and contribute to the growing knowledge of plant diversity being an important component of aquatic ecosystems. Diverse plant communities sustain higher primary productivity than comparable monocultures, affect faunal communities positively and enhance stability. Richness and identity effects vary, and identity has generally stronger effects on more variables than richness. However, species-rich communities are likely to contain several species with differing effects on functions, which renders species richness important for functioning. Mixed meadows add to coastal ecosystem functioning in the northern Baltic Sea and may provide with services essential for human well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid changes in biodiversity are occurring globally, as a consequence of anthropogenic disturbance. This has raised concerns, since biodiversity is known to significantly contribute to ecosystem functions and services. Marine benthic communities participate in numerous functions provided by soft-sedimentary ecosystems. Eutrophication-induced oxygen deficiency is a growing threat against infaunal communities, both in open sea areas and in coastal zones. There is thus a need to understand how such disturbance affects benthic communities, and what is lost in terms of ecosystem functioning if benthic communities are harmed. In this thesis, the status of benthic biodiversity was assessed for the open Baltic Sea, a system severely affected by broad-scale hypoxia. Long-term monitoring data made it possible to establish quantitative biodiversity baselines against which change could be compared. The findings show that benthic biodiversity is currently severely impaired in large areas of the open Baltic Sea, from the Bornholm Basin to the Gulf of Finland. The observed reduction in biodiversity indicates that benthic communities are structurally and functionally impoverished in several of the sub-basins due to the hypoxic stress. A more detailed examination of disturbance impacts (through field studies and -experiments) on benthic communities in coastal areas showed that changes in benthic community structure and function took place well before species were lost from the system. The degradation of benthic community structure and function was directed by the type of disturbance, and its specific temporal and spatial characteristics. The observed shifts in benthic trait composition were primarily the result of reductions in species’ abundances, or of changes in demographic characteristics, such as the loss of large, adult bivalves. Reduction in community functions was expressed as declines in the benthic bioturbation potential and in secondary biomass production. The benthic communities and their degradation accounted for a substantial proportion of the changes observed in ecosystem multifunctionality. Individual ecosystem functions (i.e. measures of sediment ecosystem metabolism, elemental cycling, biomass production, organic matter transformation and physical structuring) were observed to differ in their response to increasing hypoxic disturbance. Interestingly, the results suggested that an impairment of ecosystem functioning could be detected at an earlier stage if multiple functions were considered. Importantly, the findings indicate that even small-scale hypoxic disturbance can reduce the buffering capacity of sedimentary ecosystem, and increase the susceptibility of the system towards further stress. Although the results of the individual papers are context-dependent, their combined outcome implies that healthy benthic communities are important for sustaining overall ecosystem functioning as well as ecosystem resilience in the Baltic Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal areas harbour high biodiversity, but are simultaneously affected by rapid degradations of species and habitats due to human interactions. Such alterations also affect the functioning of the ecosystem, which is primarily governed by the characteristics or traits expressed by the organisms present. Marine benthic fauna is nvolved in numerous functions such as organic matter transformation and transport, secondary production, oxygen transport as well as nutrient cycling. Approaches utilising the variety of faunal traits to assess benthic community functioning have rapidly increased and shown the need for further development of the concept. In this thesis, I applied biological trait analysis that allows for assessments of a multitude of categorical traits and thus evaluation of multiple functional aspects simultaneously. I determined the functional trait structure, diversity and variability of coastal zoobenthic communities in the Baltic Sea. The measures were related to recruitment processes, habitat heterogeneity, large-scale environmental and taxonomic gradients as well as anthropogenic impacts. The studies comprised spatial scales from metres to thousands of kilometres, and temporal scales spanning one season as well as a decade. The benthic functional structure was found to vary within and between seagrass landscape microhabitats and four different habitats within a coastal bay, in papers I and II respectively. Expressions of trait categories varied within habitats, while the density of individuals was found to drive the functional differences between habitats. The findings in paper III unveiled high trait richness of Finnish coastal benthos (25 traits and 102 cateogries) although this differed between areas high and low in salinity and human pressure. In paper IV, the natural reduction in taxonomic richness across the Baltic Sea led to an overall reduction in function. However, functional richness in terms of number of trait categories remained comparatively high at low taxon richness. Changes in number of taxa within trait categories were also subtle and some individual categories were maintained or even increased. The temporal analysis in papers I and III highlighted generalities in trait expressions and dominant trait categories in a seagrass landscape as well as a “type organism” for the northern Baltic Sea. Some initial findings were made in all four papers on the role of common and rare species and traits for benthic community functioning. The findings show that common and rare species may not always express the same trait categories in relation to each other. Rare species in general did not express unique functional properties. In order to advance the understanding of the approach, I also assessed some issues concerning the limitations of the concept. This was conducted by evaluating the link between trait category and taxonomic richness using especially univariate measures. My results also show the need to collaborate nationally and internationally on safeguarding the utility of taxonomic and trait data. The findings also highlight the importance of including functional trait information into current efforts in marine spatial planning and biomonitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiversity-ecosystem functioning theory would predict that increasing natural enemy richness should enhance prey consumption rate due to functional complementarity of enemy species. However, several studies show that ecological interactions among natural enemies may result in complex effects of enemy diversity on prey consumption. Therefore, the challenge in understanding natural enemy diversity effects is to predict consumption rates of multiple enemies taking into account effects arising from patterns of prey use together with species interactions. Here, we show how complementary and redundant prey use patterns result in additive and saturating effects, respectively, and how ecological interactions such as phenotypic niche shifts, synergy and intraguild predation enlarge the range of outcomes to include null, synergistic and antagonistic effects. This study provides a simple theoretical framework that can be applied to experimental studies to infer the biological mechanisms underlying natural enemy diversity effects on prey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (−27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for herbivorous consumers and belowground litter input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8x25.8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthy soils are critical to agriculture, and both are essential to enabling food security. Soil-related challenges include using soils and other natural resources sustainably, combating land and soil degradation, avoiding further reduction of soil-related ecosystem services, and ensuring that all agricultural land is managed sustainably. Agricultural challenges include improving the quantity and quality of agricultural outputs to satisfy rising human needs, also in a 2 degrees world; maintaining diversity in agricultural systems while supporting those farms with the highest potential for closing existing yield gaps; and providing a livelihood for about 2.6 billion mostly poor land users. The greatest needs and potentials lie in small-scale farming, although there as elsewhere, trade-offs must be negotiated within the nexus of water, energy, land and food, including the role of soil therein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

133 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Insect pests, biological invasions and climate change are considered to representmajor threats to biodiversity, ecosystem functioning, agriculture and forestry.Deriving hypothesis of contemporary and/or future potential distributions of insectpests and invasive species is becoming an important tool for predicting the spatialstructure of potential threats.2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is apest of maize in North America that has invaded Europe in recent years, resultingin economic costs in terms of maize yields in both continents. The present studyaimed to estimate the dynamics of potential areas of invasion by the WCR under aclimate change scenario in the Northern Hemisphere. The areas at risk under thisscenario were assessed by comparing, using complementary approaches, the spatialprojections of current and future areas of climatic favourability of the WCR. Spatialhypothesis were generated with respect to the presence records in the native rangeof the WCR and physiological thresholds from previous empirical studies.3 We used a previously developed protocol specifically designed to estimatethe climatic favourability of the WCR. We selected the most biologicallyrelevant climatic predictors and then used multidimensional envelope (MDE) andMahalanobis distances (MD) approaches to derive potential distributions for currentand future climatic conditions.4 The results obtained showed a northward advancement of the upper physiologicallimit as a result of climate change, which might increase the strength of outbreaksat higher latitudes. In addition, both MDE and MD outputs predict the stability ofclimatic favourability for the WCR in the core of the already invaded area in Europe,which suggests that this zone would continue to experience damage from this pestin Europe.