998 resultados para Biochemical Activities
Resumo:
Many DNA helicases utilise the energy derived from nucleoside triphosphate hydrolysis to fuel their actions as molecular motors in a variety of biological processes. In association with RuvA, the E. coli RuvB protein (a hexameric ring helicase), promotes the branch migration of Holliday junctions during genetic recombination and DNA repair. To analyse the relationship between ATP-dependent DNA helicase activity and branch migration, a site-directed mutation was introduced into the helicase II motif of RuvB. Over-expression of RuvBD113N in wild-type E. coli resulted in a dominant negative UVs phenotype. The biochemical properties of RuvBD113N were examined and compared with wild-type RuvB in vitro. The single amino acid substitution resulted in major alterations to the biochemical activities of RuvB, such that RuvBD113N was defective in DNA binding and ATP hydrolysis, while retaining the ability to form hexameric rings and interact with RuvA. RuvBD113N formed heterohexamers with wild-type RuvB, and could inhibit RuvB function by affecting its ability to bind DNA. However, heterohexamers exhibited an ability to promote branch migration in vitro indicating that not all subunits of the ring need to be catalytically competent.
Resumo:
Stingrays of the family Potamotrygonidae are widespread throughout river systems of South America that drain into the Atlantic Ocean. Some species are endemic to the most extreme freshwater environment of the Brazil and cause frequent accidents to humans. The envenomation causes immediate, local, and intense pain, soft tissue edema, and a variable extent of bleeding. The present study was carried out in order to describe the principal biological and some biochemical properties of the Brazilian Potamotrygon fish venoms (Potamotrygon cf. scobina and P. gr. orbignyi). Both stingray venoms induced significant edematogenic and nociceptive responses in mice. Edematogenic and nociceptive responses were reduced when the venom was incubated at 37 or 56 degrees C. The results showed striking augments of leukocytes rolling and adherent cells to the endothelium of cremaster mice induced by both venoms. The data also presented that injection of both venoms induced necrosis, low level of proteolytic activity, without inducing haemorrhage. But when the venoms of both stingray species were injected together with their mucus secretion, the necrotizing activity was more vigorous. The present study provided in vivo evidence of toxic effects for P. cf. scobina and P. gr. orbignyi venoms. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.
Resumo:
Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (h beta c) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3R alpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type h beta c exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type h beta c, despite failing to undergo IL-3-stimulated h beta e tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and h beta c tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.
Resumo:
The 20 amino acid residue peptides derived from RecA loop L2 have been shown to be the pairing domain of RecA. The peptides bind to ss- and dsDNA, unstack ssDNA, and pair the ssDNA to its homologous target in a duplex DNA. As shown by circular dichroism, upon binding to DNA the disordered peptides adopt a beta-structure conformation. Here we show that the conformational change of the peptide from random coil to beta-structure is important in binding ss- and dsDNA. The beta-structure in the DNA pairing peptides can be induced by many environmental conditions such as high pH, high concentration, and non-micellar sodium dodecyl sulfate (6 mM). This behavior indicates an intrinsic property of these peptides to form a beta-structure. A beta-structure model for the loop L2 of RecA protein when bound to DNA is thus proposed. The fact that aromatic residues at the central position 203 strongly modulate the peptide binding to DNA and subsequent biochemical activities can be accounted for by the direct effect of the aromatic amino acids on the peptide conformational change. The DNA-pairing domain of RecA visualized by electron microscopy self-assembles into a filamentous structure like RecA. The relevance of such a peptide filamentous structure to the structure of RecA when bound to DNA is discussed.
Resumo:
Lipopolysacharide (LPS) present on the outer leaflet of Gram-negative bacteria is important for the adaptation of the bacteria to the environment. Structurally, LPS can be divided into three parts: lipid A, core and O-polysaccharide (OPS). OPS is the outermost and also the most diverse moiety. When OPS is composed of identical sugar residues it is called homopolymeric and when it is composed of repeating units of oligosaccharides it is called heteropolymeric. Bacteria synthesize LPS at the inner membrane via two separate pathways, Lipid A-core via one and OPS via the other. These are ligated together in the periplasmic space and the completed LPS molecule is translocated to the surface of the bacteria. The genes directing the OPS biosynthesis are often clustered and the clusters directing the biosynthesis of heteropolymeric OPS often contain genes for i) the biosynthesis of required NDP-sugar precursors, ii) glycosyltransferases needed to build up the repeating unit, iii) translocation of the completed O-unit to the periplasmic side of the inner membrane (flippase) and iv) polymerization of the repeating units to complete OPS. The aim of this thesis was to characterize the biosynthesis of the outer core (OC) of Yersinia enterocolitica serotype O:3 (YeO3). Y. enterocolitica is a member of the Gram-negative Yersinia genus and it causes diarrhea followed sometimes by reactive arthritis. The chemical structure of the OC and the nucleotide sequence of the gene cluster directing its biosynthesis were already known; however, no experimental evidence had been provided for the predicted functions of the gene products. The hypothesis was that the OC biosynthesis would follow the pathway described for heteropolymeric OPS, i.e. a Wzy-dependent pathway. In this work the biochemical activities of two enzymes involved in the NDP-sugar biosynthesis was established. Gne was determined to be a UDP-N-acetylglucosamine-4-epimerase catalyzing the conversion of UDP-GlcNAc to UDP-GalNAc and WbcP was shown to be a UDP-GlcNAc- 4,6-dehydratase catalyzing the reaction that converts UDP-GlcNAc to a rare UDP-2-acetamido- 2,6-dideoxy-d-xylo-hex-4-ulopyranose (UDP-Sugp). In this work, the linkage specificities and the order in which the different glycosyltransferases build up the OC onto the lipid carrier were also investigated. In addition, by using a site-directed mutagenesis approach the catalytically important amino acids of Gne and two of the characterized glycosyltranferases were identified. Also evidence to show the enzymes involved in the ligations of OC and OPS to the lipid A inner core was provided. The importance of the OC to the physiology of Y. enterocolitica O:3 was defined by determining the minimum requirements for the OC to be recognized by a bacteriophage, bacteriocin and monoclonal antibody. The biological importance of the rare keto sugar (Sugp) was also shown. As a conclusion this work provides an extensive overview of the biosynthesis of YeO3 OC as it provides a substantial amount of information of the stepwise and coordinated synthesis of the Ye O:3 OC hexasaccharide and detailed information of its properties as a receptor.
Resumo:
Des évidences expérimentales récentes indiquent que les ARN changent de structures au fil du temps, parfois très rapidement, et que ces changements sont nécessaires à leurs activités biochimiques. La structure de ces ARN est donc dynamique. Ces mêmes évidences notent également que les structures clés impliquées sont prédites par le logiciel de prédiction de structure secondaire MC-Fold. En comparant les prédictions de structures du logiciel MC-Fold, nous avons constaté un lien clair entre les structures presque optimales (en termes de stabilité prédites par ce logiciel) et les variations d’activités biochimiques conséquentes à des changements ponctuels dans la séquence. Nous avons comparé les séquences d’ARN du point de vue de leurs structures dynamiques afin d’investiguer la similarité de leurs fonctions biologiques. Ceci a nécessité une accélération notable du logiciel MC-Fold. L’approche algorithmique est décrite au chapitre 1. Au chapitre 2 nous classons les impacts de légères variations de séquences des microARN sur la fonction naturelle de ceux-ci. Au chapitre 3 nous identifions des fenêtres dans de longs ARN dont les structures dynamiques occupent possiblement des rôles dans les désordres du spectre autistique et dans la polarisation des œufs de certains batraciens (Xenopus spp.).
Resumo:
Man's concern with environmental deterioration is one of the major reasons for the increased interest in marine and estuarine microbes. Microbes form an important link in the biogeochemical cycling and their cyclinq activites often determine to a large measure the potential productivity of an ecosystem In the recycling of the nutrients in the estuary, bacteria and fungi therefore play a particularly significant role.The allochthonous plant materials contain biopolymers such as cellulose, lignin, humus etc., that are difficult to degrade into simpler substances. The fungi have the ability to degrade _substances, thereby making them available for cycling within the system. The present study is devoted to find the composition and the activity of myco populations of Cochin backwater. For convenience the thesis is divided into eight chapters. The opening chapter briefly reviews the literature and projects the importance of work and the main objectives. Second chapter discusses the materials and methods. In the third chapter the systematic and taxonomy of estuarine yeasts are examined in detail since this information is scarcely available for our waters. The general ecological aspects of the yeasts and filamentous fungi in the area of study are examined in the fourth chapter using appropriate statistical techniques. A special reference to the fungi in a small mangrove ecosystem is attempted in the fifth chapter. The biochemical studies are discussed in the sixth chapter and the penultimate chapter provides an overall discussion. In the last chapter the summary of the work is presented.
Resumo:
Heterochromatin Protein 1 (HP1) is an evolutionarily conserved protein required for formation of a higher-order chromatin structures and epigenetic gene silencing. The objective of the present work was to functionally characterise HP1-like proteins in Dictyostelium discoideum, and to investigate their function in heterochromatin formation and transcriptional gene silencing. The Dictyostelium genome encodes three HP1-like proteins (hcpA, hcpB, hcpC), from which only two, hcpA and hcpB, but not hcpC were found to be expressed during vegetative growth and under developmental conditions. Therefore, hcpC, albeit no obvious pseudogene, was excluded from this study. Both HcpA and HcpB show the characteristic conserved domain structure of HP1 proteins, consisting of an N-terminal chromo domain and a C-terminal chromo shadow domain, which are separated by a hinge. Both proteins show all biochemical activities characteristic for HP1 proteins, such as homo- and heterodimerisation in vitro and in vivo, and DNA binding activtity. HcpA furthermore seems to bind to K9-methylated histone H3 in vitro. The proteins thus appear to be structurally and functionally conserved in Dictyostelium. The proteins display largely identical subnuclear distribution in several minor foci and concentration in one major cluster at the nuclear periphery. The localisation of this cluster adjacent to the nucleus-associated centrosome and its mitotic behaviour strongly suggest that it represents centromeric heterochromatin. Furthermore, it is characterised by histone H3 lysine-9 dimethylation (H3K9me2), which is another hallmark of Dictyostelium heterochromatin. Therefore, one important aspect of the work was to characterise the so-far largely unknown structural organisation of centromeric heterochromatin. The Dictyostelium homologue of inner centromere protein INCENP (DdINCENP), co-localized with both HcpA and H3K9me2 during metaphase, providing further evidence that H3K9me2 and HcpA/B localisation represent centromeric heterochromatin. Chromatin immunoprecipitation (ChIP) showed that two types of high-copy number retrotransposons (DIRS-1 and skipper), which form large irregular arrays at the chromosome ends, which are thought to contain the Dictyostelium centromeres, are characterised by H3K9me2. Neither overexpression of full-length HcpA or HcpB, nor deletion of single Hcp isoforms resulted in changes in retrotransposon transcript levels. However, overexpression of a C-terminally truncated HcpA protein, assumed to display a dominant negative effect, lead to an increase in skipper retrotransposon transcript levels. Furthermore, overexpression of this protein lead to severe growth defects in axenic suspension culture and reduced cell viability. In order to elucidate the proteins functions in centromeric heterochromatin formation, gene knock-outs for both hcpA and hcpB were generated. Both genes could be successfully targeted and disrupted by homologous recombination. Surprisingly, the degree of functional redundancy of the two isoforms was, although not unexpected, very high. Both single knock-out mutants did not show any obvious phenotypes under standard laboratory conditions and only deletion of hcpA resulted in subtle growth phenotypes when grown at low temperature. All attempts to generate a double null mutant failed. However, both endogenous genes could be disrupted in cells in which a rescue construct that ectopically expressed one of the isoforms either with N-terminal 6xHis- or GFP-tag had been introduced. The data imply that the presence of at least one Hcp isoform is essential in Dictyostelium. The lethality of the hcpA/hcpB double mutant thus greatly hampered functional analysis of the two genes. However, the experiment provided genetic evidence that the GFP-HcpA fusion protein, because of its ability to compensate the loss of the endogenous HcpA protein, was a functional protein. The proteins displayed quantitative differences in dimerisation behaviour, which are conferred by the slightly different hinge and chromo shadow domains at the C-termini. Dimerisation preferences in increasing order were HcpA-HcpA << HcpA-HcpB << HcpB-HcpB. Overexpression of GFP-HcpA or a chimeric protein containing the HcpA C-terminus (GFP-HcpBNAC), but not overexpression of GFP-HcpB or GFP-HcpANBC, lead to increased frequencies of anaphase bridges in late mitotic cells, which are thought to be caused by telomere-telomere fusions. Chromatin targeting of the two proteins is achieved by at least two distinct mechanisms. The N-terminal chromo domain and hinge of the proteins are required for targeting to centromeric heterochromatin, while the C-terminal portion encoding the CSD is required for targeting to several other chromatin regions at the nuclear periphery that are characterised by H3K9me2. Targeting to centromeric heterochromatin likely involves direct binding to DNA. The Dictyostelium genome encodes for all subunits of the origin recognition complex (ORC), which is a possible upstream component of HP1 targeting to chromatin. Overexpression of GFP-tagged OrcB, the Dictyostelium Orc2 homologue, showed a distinct nuclear localisation that partially overlapped with the HcpA distribution. Furthermore, GFP-OrcB localized to the centrosome during the entire cell cycle, indicating an involvement in centrosome function. DnmA is the sole DNA methyltransferase in Dictyostelium required for all DNA(cytosine-)methylation. To test for its in vivo activity, two different cell lines were established that ectopically expressed DnmA-myc or DnmA-GFP. It was assumed that overexpression of these proteins might cause an increase in the 5-methyl-cytosine(5-mC)-levels in the genomic DNA due to genomic hypermethylation. Although DnmA-GFP showed preferential localisation in the nucleus, no changes in the 5-mC-levels in the genomic DNA could be detected by capillary electrophoresis.
Resumo:
Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation. including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I. a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-1 metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11. 1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)